精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
如图,在四棱锥P-ABCD中,PD上⊥平面ABCD,AD⊥CD,且BD平分∠ADC,
    E为PC的中点,AD=CD=l,BC=PC,
(Ⅰ)证明PA∥平面BDE;
(Ⅱ)证明AC⊥平面PBD:
(Ⅲ)求四棱锥P-ABCD的体积,
(Ⅰ)证明:设AC∩BD=H,连结EH,在△ADC中,因为AD=CD,且DB平分
∠ADC,所以H为AC的中点,又E为PC的中点,从而EH∥PA,
因为平面BDE,平面BDE,所以PA∥平面BDE;
(Ⅱ)证明:因为PD⊥平面ABCD,平面ABCD,所以PD⊥AC,
由(I)知BD⊥AC,PD∩BD=D,平面PBD,平面PBD,
从而AC⊥平面PBD:
(Ⅲ)解:在△BCD中,DC=1,,得

在Rt△PDC中,从而PD=2,
,故四棱锥P-ABCD的体积
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知四棱锥P—ABCD中,平面ABCD,底面ABCD为菱形,,AB=PA=2,E.F分别为BC.PD的中点。

(Ⅰ)求证:PB//平面AFC;
(Ⅱ)求平面PAE与平面PCD所成锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在斜三棱柱中,,又顶点在底面上的射影落在上,侧棱与底面角,的中点.

(1)求证:
(2)如果二面角为直二面角,试求侧棱与侧面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,四棱锥的底面是一个边长为4的正方形,侧面是正三角形,侧面底面
(Ⅰ)求四棱锥的体积;
(Ⅱ)求直线与平面所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,正方形ADEF与梯形ABCD所在的平面互相垂直,


(Ⅰ)求证:
(Ⅱ)在上找一点,使得平面,请确定点的位置,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知四棱锥,底面为菱形,平面分别是的中点.
(Ⅰ)判定AE与PD是否垂直,并说明理由
(Ⅱ)若上的动点,与平面所成最大角的正切值为,求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若球的半径为,则这个球的内接正方体的全面积等于
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

地球北纬圈上有两点,点在东经处,点在西经处,若地球半径为,则两点的球面距离为 _____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体的棱长为4,P、Q分别为棱上的中点,M在上,且,过P、Q、M的平面与交于点N,则MN=             .

查看答案和解析>>

同步练习册答案