精英家教网 > 高中数学 > 题目详情
11.求平行于直线x+y-3=0并与圆x2+y2-6x-4y+5=0相切的直线方程.

分析 根据题意,结合直线平行的性质,设要求的直线的方程为x+y+c=0,由圆的方程求出圆心与半径,要求的直线与圆相切,即圆心到直线的距离等于半径,可得$\frac{|5+c|}{\sqrt{2}}$=2$\sqrt{2}$,解可得c,即可得答案.

解答 解:根据题意,可设其方程为x+y+c=0;
圆的方程可变形为(x-3)2+(y-2)2=8,圆心为(3,2),半径为2$\sqrt{2}$;
要求的直线与圆相切,则有$\frac{|5+c|}{\sqrt{2}}$=2$\sqrt{2}$,则c=-1或-9,
即要求的直线方程为x+y-1=0或x+y-9=0.

点评 本题考查直线与圆的位置关系以及直线与直线平行的运用,一般解直线与圆相切的问题时,将其转化为圆心到直线的距离为半径来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若z(1+i)=(1-i)2(i为虚数单位),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是A1B1、B1C1的中点.
(1)求三棱锥A1-AB1D1体积;
(2)求异面直线DB1与EF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.根据下列各无穷数列的前5项,写出数列的一个通项公式:
(1)2,2,2,2,2,…;
(2)4,9,16,25,36,…;
(3)$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,$\frac{1}{4×5}$,$\frac{1}{5×6}$,….

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知点F1,F2是椭圆C1:$\frac{{x}^{2}}{2}$+y2=1的两个焦点,椭圆C2:$\frac{{x}^{2}}{2}$+y2=λ经过点F1,F2,点P是椭圆C2上异于F1,F2的任意一点,直线PF1和PF2与椭圆C1的交点分别是A,B和C,D,设AB、CD的斜率为k,k′.
(1)求证kk′为定值;
(2)求|AB|•|CD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{3}$x3+ax+b(a,b∈R),在x=2处取得极小值-$\frac{4}{3}$.
(1)求a和b的值;
(2)求函数f(x)在x=0处的切线方程及单调递增区间;
(3)若对任意x1,x2∈[-4,3]时,都有|f(x1)-f(x2)|≤m2+m+$\frac{14}{3}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算:
(1)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)×$\root{3}{a}$=a
(2)(0.0081)${\;}^{-\frac{1}{4}}$-[3×($\frac{7}{8}$)0]-1•[81-0.25+(3$\frac{3}{8}$)${\;}^{-\frac{1}{3}}$]${\;}^{-\frac{1}{2}}$-10×0.027${\;}^{\frac{1}{3}}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.用X线透视诊断肺结核,设A={实有肺结核},B={被判有肺结核}.若某市成人中P(A)=0.001,这种检查阳性的正确率P(B|A)=0.95,阴性的正确率P($\overline{B}$|$\overline{A}$)=0.998.
(1)求该市一个人经透视被判有肺结核的概率;
(2)若一个人经透视被判有肺结核,求他实际患有肺结核的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.6个人站成一排,若甲不站最左边,乙不站最右边.且乙丙不能相邻,则一共有399种不同的站位方式.(用数字作答)

查看答案和解析>>

同步练习册答案