精英家教网 > 高中数学 > 题目详情

【题目】已知向量=(2cos sin),=(cos,2cos),(ω>0),设函数f(x)=,且f(x)的最小正周期为π.

(1)求函数f(x)的表达式;

(2)求f(x)的单调递增区间.

【答案】(1)f(x)=2sin(2x+)+1;(2)单调递增区间为[﹣ +kπ, +kπ],k∈Z.

【解析】试题分析:(1)先根据向量数量积得函数关系式,再根据二倍角公式以及配角公式将函数化为基本三角函数,最后根据正弦函数性质求 (2)根据正弦函数性质列不等式: ,再解不等式可得增区间

试题解析:解:(1)向量=(2cossin),=(cos,2cos),(ω>0),

则函数f(x)==2cos2+2sincos=cosωx+1+sinωx=2sin(ωx+)+1,

∵f(x)的最小正周期为π,

∴π=.解得ω=2,

∴f(x)=2sin(2x+)+1;

(2)令﹣+2kπ≤2x++2kπ,k∈Z,

即﹣+kπ≤x≤+kπ,k∈Z,

∴f(x)的单调递增区间为[﹣+kπ,+kπ],k∈Z.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列各式中,正确的是(  )
A.2{x|x≤2}
B.3∈{x|x>2且x<1}
C.{x|x=4k±1,k∈Z}≠{x|x=2k+1,k∈Z}
D.{x|x=3k+1,k∈Z}={x|x=3k﹣2,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1﹣x)+loga(x+3)(0<a<1)
(1)求函数f(x)的定义域;
(2)求函数f(x)的零点;
(3)若函数f(x)的最小值为﹣4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱柱的底面边长为,高为,现从该正四棱柱的个顶点中任取个点.设随机变量的值为以取出的个点为顶点的三角形的面积.

(1)求概率

(2)的分布列,并求其数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)若恒成立,求参数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)的定义域为[﹣1,5],则函数y=f(3x﹣5)的定义域为(
A.
B.[ ]
C.[﹣8,10]
D.(CRA)∩B

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 的定义域为R,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线 与圆 )相交于四个点.

(Ⅰ)求的取值范围;

(Ⅱ)当四边形的面积最大时,求对角线的交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

同步练习册答案