精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
1
2
,1)
内不单调,求实数a的取值范围.
(1)f'(x)=3x2+2ax+1由f'(1)=0得a=-2
∴f(x)=x3-2x2+x+1
当x=-1时,y=-3即切点(-1,-3)
k=f'(x0)=3x02-4x0+1令x0=-1得k=8
∴切线方程为8x-y+5=0
(2f(x)在区间(
1
2
,1)
内不单调即f′(x)=0在(
1
2
,1)
有解
∴3x2+2ax+1=0在(
1
2
,1)
有解
2a=-3x-
1
x

令h(x)=-3x-
1
x

h′(x)=-3+
1
x2
<0

知h(x)在(
3
3
,1)
单调递减,在(
1
2
3
3
)
单调递增
h(1)<h(x)≤h(
3
3
)

即h(x)∈[-4,-2
3
]

-4<2a≤-2
3

-2<a≤-
3

而当a=-
3
时,f′(x)=3x2-2
3
x+1=(
3
x-1)2≥0

∴舍去
综上a∈(-2,-
3
)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
12
,1)
内不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3•cosx+1,若f(a)=5,则f(-a)=
 

查看答案和解析>>

同步练习册答案