精英家教网 > 高中数学 > 题目详情
10.求f(x)=$\frac{{k}^{2}}{x}$+x,k>0的极值.

分析 先求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.

解答 解:∵f(x)=$\frac{{k}^{2}}{x}$+x,k>0,
∴f′(x)=1-$\frac{{k}^{2}}{{x}^{2}}$=$\frac{{x}^{2}{-k}^{2}}{{x}^{2}}$,
令f′(x)>0,解得x>k或x<-k,
令f′(x)<0,解得:0<x<k或-k<x<0,
∴f(x)在(-∞,-k),(k,+∞)递增,在(-k,0),(0,k)递减,
∴f(x)极小值=f(k)=2k,f(x)极大值=f(-k)=-2k.

点评 本题考查了求函数的单调性、极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知f(x)=$\left\{\begin{array}{l}{2x,x>0}\\{f(x+2),x≤0}\end{array}\right.$,则f(1)+(-1)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知下列问题:
①从甲、乙、丙三名同学中选出两名分别参加数学和物理学习小组;
②从甲、乙、丙三名同学中选出两名同学参加一项活动;
③从α,b,c,d四个字母中取出2个字母;
④从1,2,3,4四个数字中取出2个数字组成一个两位数.
其中是排列问题的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知圆锥的轴截面是腰长为$\sqrt{2}$的等腰直角三角形.试求:
(1)圆锥的侧面积;
(2)圆锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对于函数f(x)若存在x0∈Z,满足f(x0)≤$\frac{1}{4}$,则称x0为函数f(x)一个近零点,已知函数f(x)=ax2+bx+c(a>0),有4个不同的近零点,则a的最大值$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知sin(α+β)=$\frac{1}{2}$,sin(α-β)=$\frac{1}{3}$,那么log5$\frac{tanα}{tanβ}$的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α是第二象限角,其终边上一点$P(x,\sqrt{3})$,且$cosα=\frac{{\sqrt{2}}}{4}x$,则sinα=(  )
A.$-\frac{{\sqrt{6}}}{4}$B.$-\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{6}}}{4}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(α)=$\frac{sin(π-α)}{sin(\frac{π}{2}+α)}$.
(Ⅰ)求f($\frac{4π}{3}$)的值;
(Ⅱ)若角A是△ABC的内角,且f(A)=$\frac{3}{4}$,求cos2A-sin2A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列{2n-11}的前n项和Sn中最小的是(  )
A.S4B.S5C.S6D.S7

查看答案和解析>>

同步练习册答案