分析 (I)利用诱导公式与同角三角函数基本关系式可得f(α)=tanα.代入即可得出f($\frac{4π}{3}$).
(II)f(A)=$\frac{3}{4}$,可得tanA=$\frac{3}{4}$,可得cos2A-sin2A=$\frac{co{s}^{2}A-si{n}^{2}A}{si{n}^{2}A+co{s}^{2}A}$=$\frac{1-ta{n}^{2}A}{1+ta{n}^{2}A}$.
解答 解:(I)f(α)=$\frac{sin(π-α)}{sin(\frac{π}{2}+α)}$=$\frac{sinα}{cosα}$=tanα.∴f($\frac{4π}{3}$)=$tan\frac{4π}{3}$=$tan\frac{π}{3}$=$\sqrt{3}$;
(II)f(A)=$\frac{3}{4}$,∴tanA=$\frac{3}{4}$,
∴cos2A-sin2A=$\frac{co{s}^{2}A-si{n}^{2}A}{si{n}^{2}A+co{s}^{2}A}$=$\frac{1-ta{n}^{2}A}{1+ta{n}^{2}A}$=$\frac{1-(\frac{3}{4})^{2}}{1+(\frac{3}{4})^{2}}$=$\frac{7}{25}$.
点评 本题考查了诱导公式与同角三角函数基本关系式、“弦化切”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-2)2+(y+1)2=2 | B. | (x+2)2+(y-1)2=4 | C. | (x-2)2+(y+1)2=8 | D. | (x+2)2+(y-1)2=8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\frac{1}{x}$ | B. | y=-$\frac{1}{|x|}$ | C. | y=1-x2 | D. | y=x2-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1或0 | B. | -1或1 | C. | 0 | D. | -1或0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c,d | B. | d,e | C. | b,e | D. | c,e |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com