精英家教网 > 高中数学 > 题目详情
14.执行如图所示的程序框图,输出的S值是(  )
A.10B.20C.100D.120

分析 由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:第一次执行循环体后,a=1,满足继续循环的条件,故S=1,i=2;
第二次执行循环体后,a=3,满足继续循环的条件,故S=2,i=3;
第三次执行循环体后,a=5,满足继续循环的条件,故S=3,i=4;
第四次执行循环体后,a=7,满足继续循环的条件,故S=4,i=5;
第五次执行循环体后,a=9,满足继续循环的条件,故S=5,i=6;
第六次执行循环体后,a=11,满足继续循环的条件,故S=6,i=7;
第七次执行循环体后,a=13,满足继续循环的条件,故S=7,i=8;
第八次执行循环体后,a=15,满足继续循环的条件,故S=8,i=9;
第九次执行循环体后,a=17,满足继续循环的条件,故S=9,i=10;
第十次执行循环体后,a=19,满足继续循环的条件,故S=10,i=11;
第十一次执行循环体后,a=21,不满足继续循环的条件,
故输出的S值为10,
故选:A

点评 本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若tan(π+a)=-$\frac{1}{2}$,则tan(3π-a)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对于函数f(x)若存在x0∈Z,满足f(x0)≤$\frac{1}{4}$,则称x0为函数f(x)一个近零点,已知函数f(x)=ax2+bx+c(a>0),有4个不同的近零点,则a的最大值$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α是第二象限角,其终边上一点$P(x,\sqrt{3})$,且$cosα=\frac{{\sqrt{2}}}{4}x$,则sinα=(  )
A.$-\frac{{\sqrt{6}}}{4}$B.$-\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{6}}}{4}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.tan(-$\frac{4π}{3}$)+tan$\frac{4π}{3}$等于(  )
A.-2$\sqrt{3}$B.-$\frac{2\sqrt{3}}{3}$C.0D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(α)=$\frac{sin(π-α)}{sin(\frac{π}{2}+α)}$.
(Ⅰ)求f($\frac{4π}{3}$)的值;
(Ⅱ)若角A是△ABC的内角,且f(A)=$\frac{3}{4}$,求cos2A-sin2A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列两个函数相同的是(  )
A.f(x)=lnx2,g(x)=2lnxB.f(x)=x,g(x)=($\sqrt{x}$)2
C.f(x)=cosx•tanx,g(x)=sinxD.f(x)=x2,g(x)=$\sqrt{{x}^{4}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若(1-2015x)2015=a0+a1x+…+a2015x2015(x∈R),则$\frac{a_1}{2015}$+$\frac{a_2}{2015^2}$+…+$\frac{a_{2015}}{2015^{2015}}$的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,某人在山脚P处测得甲山山顶A的仰角为30°,乙山山顶B的仰角为45°,∠APB的大小为45°,山脚P到山顶A的直线距离为2km,在A处测得山顶B的仰角为30°,则乙山的高度为2km.

查看答案和解析>>

同步练习册答案