分析 由已知可得${a}_{n}(2{a}_{n+1}-{a}_{n})+\frac{1}{2}{n}^{2}={{a}_{n+1}}^{2}-\frac{1}{2}{n}^{2}$,整理得$({a}_{n+1}-{a}_{n})^{2}={n}^{2}$,结合an>0,可得an+1-an=n,然后利用累加法求得答案.
解答 解:∵点$({a_{n+1}}^2-\frac{1}{2}{n^2},{a_n}(2{a_{n+1}}-{a_n})+\frac{1}{2}{n^2})$在直线y=x上,
∴${a}_{n}(2{a}_{n+1}-{a}_{n})+\frac{1}{2}{n}^{2}={{a}_{n+1}}^{2}-\frac{1}{2}{n}^{2}$,
即${{a}_{n+1}}^{2}-2{a}_{n+1}{a}_{n}+{{a}_{n}}^{2}={n}^{2}$,
∴$({a}_{n+1}-{a}_{n})^{2}={n}^{2}$,
则an+1-an=±n,
∵an>0,
∴an+1-an=n,
则an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(n-1)+(n-2)+…+1+1=$\frac{n(n-1)}{2}+1=\frac{{n}^{2}-n+2}{2}$;
故答案为:$\frac{{{n^2}-n+2}}{2}$.
点评 本题考查数列递推式,考查了数列的函数特性,训练了累加法求数列的通项公式,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{6}}}{4}$ | B. | $-\frac{{\sqrt{2}}}{4}$ | C. | $\frac{{\sqrt{6}}}{4}$ | D. | $\frac{{\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| A班 | B班 | 合计 | |
| 种子选手 | |||
| 非种子选手 | |||
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com