分析 (1)运用因式分解和均值不等式,结合不等式的可乘性,即可得证;
(2)由作差法,运用因式分解,可得a3+b3≥a2b+b2a;同理可得b3+c3≥b2c+c2b;c3+a3≥c2a+a2c.相加即可得证.
解答 证明:(1)由a,b,c∈R+,可得
ab+a+b+1=(a+1)(b+1)≥2$\sqrt{a}$•2$\sqrt{b}$=4$\sqrt{ab}$,
ab+ac+bc+c2=(a+c)(b+c)≥2$\sqrt{ac}$•2$\sqrt{bc}$=4c$\sqrt{ab}$,
两式相乘可得,(ab+a+b+1)(ab+ac+bc+c2)≥16abc,
当且仅当a=b=c=1,取得等号;
(2)由a,b,c>0,可得
a3+b3-a2b-b2a=a2(a-b)-b2(a-b)=(a-b)2(a+b)≥0,
即为a3+b3≥a2b+b2a;
同理可得b3+c3≥b2c+c2b;
c3+a3≥c2a+a2c.
以上三式相加可得,
2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b),
当且仅当a=b=c,取得等号.
点评 本题考查不等式的证明,注意运用综合法证明,运用均值不等式和作差法,以及不等式的性质,考查推理能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 阶梯级别 | 第一阶梯水量 | 第二阶梯水量 | 第三阶梯水量 |
| 月用水量范围(单位:立方米) | (0,10] | (10,15] | (15,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}-1}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{17}-1}}{4}$ | D. | 2$\sqrt{2}$-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com