精英家教网 > 高中数学 > 题目详情
已知f(x)是三次项系数为
a
3
的三次函数,且不等式f′(x)-9x>0的解集为(1,2)
(1)若方程f′(x)+7a=0有两个相等的实根,求a的值
(2)若函数g(x)=f(x)+ax在[1,3]上单调递增,求实数a的取值范围.
考点:利用导数研究函数的单调性,根的存在性及根的个数判断
专题:综合题,导数的综合应用
分析:(1)设f(x)=
a
3
x3+bx2+cx+d,由f′(x)-9x=ax2+2bx+c-9x>0的解集为(1,2),得f′(x)-9x=ax2+2bx+c-9x=a(x-1)(x-2),从而得f′(x)=a(x-1)(x-2)+9x=ax2+(9-3a)x+2a,进而得f'(x)+7a=0,由方程有两相等实根得△=0,可求a值;
(2)g(x)=f(x)+ax在[1,3]上单调递增,等价于g'(x)≥0在[1,3]上恒成立,即f′(x)+a=ax2+(9-3a)x+3a≥0在[1,3]上恒成立,分离参数a后化为求函数的最值即可,利用基本不等式可求最值;
解答: 解:设f(x)=
a
3
x3+bx2+cx+d,∴f'(x)=ax2+2bx+c,
∵f′(x)-9x=ax2+2bx+c-9x>0的解集为(1,2),
∴f′(x)-9x=ax2+2bx+c-9x=a(x-1)(x-2),即f′(x)=a(x-1)(x-2)+9x=ax2+(9-3a)x+2a,
(1)∵f'(x)+7a=ax2+(9-3a)x+9a=0有两相等实数根,
∴△=(9-3a)2-36a2=0,解得a=-3或a=1.
(2)∵g(x)=f(x)+ax在[1,3]上单调递增,
∴g'(x)≥0在[1,3]上恒成立,即f′(x)+a=ax2+(9-3a)x+3a≥0在[1,3]上恒成立,
∴a
-9x
x2-3x+3
在[1,3]上恒成立,
-9x
x2-3x+3
=
-9
x+
3
x
-3
,且x∈[1,3]时,2
3
≤x+
3
x
≤4

-9
x+
3
x
-3
-9
4-3
=-9,
∴a≥-9.
点评:该题考查利用导数研究函数的单调性、方程的根等知识,考查函数与方程思想,考查学生综合运用知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某电视台“挑战60秒”活动规定上台演唱:
(Ⅰ)连续达到60秒可转动转盘(转盘为八等分圆盘)一次进行抽奖,达到90秒可转两次,达到120秒可转三次(奖金累加).
(Ⅱ)转盘指针落在Ⅰ、Ⅱ、Ⅲ区依次为一等奖(500元)、二等奖(200元)、三等奖(100元),落在其它区域不奖励.
(Ⅲ)演唱时间从开始到三位评委中至少1人呜啰为止,现有一演唱者演唱时间为100秒.
(1)求此人中一等奖的概率;
(2)设此人所得奖金为ξ,求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,
AB
=(1,1),
AC
=(2,k),k是区间[-3,1]上任取的一个整数,求△ABC为直角三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:由直线x=1、x=2、曲线y=
1
x
及x轴所围图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x|+
m
x
-1(x≠0).
(1)当m=2时,判断f(x)在(-∞,0)的单调性,并用定义证明.
(2)若对任意x∈R,不等式 f(2x)>0恒成立,求m的取值范围;
(3)讨论f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程x2-(6+i)x+9+ai=0(a∈R)有实根x=b.
(1)求实数a,b的值.
(2)若复数z1=
2
1+i
,复数z满足|z-a-bi|=|z1|,求复数z的模|z|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明“一个三角形不能有两个直角”有三个步骤:
①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.
②所以一个三角形不能有两个直角.
③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.
上述步骤的正确顺序为
 
.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为2cm的半圆,则该圆锥的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
25
-
y2
9
=1的左支上有一点M到右焦点F1的距离为18,N是MF1的中点,O为坐标原点,则|ON|=
 

查看答案和解析>>

同步练习册答案