精英家教网 > 高中数学 > 题目详情
点P在双曲线上•,是这条双曲线的两个焦点,
,且的三条边长成等差数列,则此双曲线的离心率是         
5

试题分析:设P是双曲线右支上一点,由三条边长成等差数列得
,即因为所以有代入整理得
点评:双曲线定义:双曲线上的点到两焦点的距离之差的绝对值等于,求离心率的题目关键是找到关于的齐次方程或不等式
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知抛物线、椭圆和双曲线都经过点,它们在轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)对于抛物线上任意一点,点都满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线的焦点与双曲线的右焦点重合,则实数的值是      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线与曲线的(   )
A.离心率相等B.焦距相等C.焦点相同D.准线相同

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为.
(Ⅰ)求椭圆的方程和其“准圆”方程.
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭圆都只有一个交点,且分别交其“准圆”于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程所表示的曲线是(   )
A.双曲线B.椭圆C.双曲线的一部分D.椭圆的一部分

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,斜率为1的直线过抛物线的焦点F,与抛物线交于两点A,B,

(1)若|AB|=8,求抛物线的方程;
(2)设C为抛物线弧AB上的动点(不包括A,B两点),求的面积S的最大值;
(3)设P是抛物线上异于A,B的任意一点,直线PA,PB分别交抛物线的准线于M,N两点,证明M,N两点的纵坐标之积为定值(仅与p有关)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点
面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆)的两焦点分别为,以为边作正三角形,若正三角形的第三个顶点恰好是椭圆短轴的一个端点,则椭圆的离心率为 (    )  
A.  B. C.D.

查看答案和解析>>

同步练习册答案