精英家教网 > 高中数学 > 题目详情
5.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$+t$\overrightarrow{b}$),则实数t的值为(  )
A.-2B.-1C.1D.2

分析 利用向量垂直得到数量积为0,由此得到关于t的等式解之.

解答 解:由已知得到$\overrightarrow{a}•\overrightarrow{b}=|\overrightarrow{a}||\overrightarrow{b}|cos120°$=-$\frac{1}{2}$,
由($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$+t$\overrightarrow{b}$),则($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$+t$\overrightarrow{b}$)=0,则${\overrightarrow{a}}^{2}+t{\overrightarrow{b}}^{2}+(t+1)\overrightarrow{a}•\overrightarrow{b}$=0,
所以1+t-$\frac{1}{2}$(t+1)=0,解得t=-1;
故选:B.

点评 本题考查了平面向量的数量积公式的运用以及向量垂直的性质运用;属于基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=px-$\frac{p}{x}$-2lnx,其中p∈R.
(Ⅰ)求函数f(x)在(1,0)点的切线方程;
(Ⅱ)若函数f(x)在其定义域内为单调递增函数,求实数p的取值范围;
(Ⅲ)若函数g(x)=$\frac{2e}{x}$,且p>0,若在[1,e]上至少存在一个x的值使f(x)>g(x)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知4sin2$\frac{A-B}{2}$+4sinAsinB=2+$\sqrt{2}$.
(1)求角C的大小;
(2)已知b=4,△ABC的面积为8,求边长c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设变量x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x+y-4≤0}\\{x-3y+4≤0}\end{array}\right.$,则目标函数Z=x-y的最大值为(  )
A.4B.1C.0D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设m,n表示两条不同直线,α,β表示两个不同的平面,下列说法正确的是(  )
A.若m∥β,β⊥α则m⊥αB.若m⊥n,n⊥β,β⊥α,则m⊥α
C.若m⊥α,m⊥n则n∥αD.若m⊥α,n?α,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.二人相约12:00~13:00在体育场见面,假定每人在这段时间内的每个时刻到达该地点的可能性是相同的,先到者等20分钟就可离去,试求这两人会面的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在等腰三角形ABC中,∠B=∠C=30°,求下列事件的概率:
(1)在底边BC上任取一点P,使BP<AB;
(2)在∠BAC的内部任作射线AP交线段BC于点P,使BP<AB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是某几何体的三视图(正视图与侧视图一样,上面是半径为1的半圆,下面是边长为2的正方形),则该几何体的体积是(  )
A.8+$\frac{2}{3}$πB.8+$\frac{4}{3}$πC.24+πD.20+2π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若不等式(-1)na<2+$\frac{(-1)^{n+1}}{n}$对于任意正整数n都成立,则实数a的取值范围是(  )
A.$[-2,\frac{3}{2})$B.$(-2,\frac{3}{2}]$C.[-3,2]D.(-3,1)

查看答案和解析>>

同步练习册答案