| A. | a<b<c | B. | c<a<b | C. | c<a<b | D. | b<a<c |
分析 根据条件分别判断函数的周期性和对称性,结合函数单调性,进行转化求解即可.
解答 解:由f(x+2)=f(x-2)得f(x+4)=f(x),即函数的周期是4,
∵函数y=f(x+2)是偶函数,∴f(-x+2)=f(x+2),即函数关于x=2对称,
当x∈(0,2]时,f(x)=ex-$\frac{1}{x}$为增函数,
则f(-5)=f(-5+8)=f(3)=f(1),
f($\frac{19}{2}$)=f($\frac{19}{2}$-8)=f($\frac{3}{2}$),
f($\frac{41}{4}$)=f($\frac{41}{4}$-8)=f($\frac{9}{4}$)=f($\frac{1}{4}$+2)=f(-$\frac{1}{4}$+2)=f($\frac{7}{4}$),
∵1<$\frac{3}{2}$<$\frac{7}{4}$,∴f(1)<f($\frac{3}{2}$)<f($\frac{7}{4}$),
即a<b<c,
故选:A
点评 本题主要考查函数值的大小比较,利用函数周期性,对称性以及单调性的性质进行转化是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 4 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | $2\sqrt{3}$ | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 48ln2 | B. | 40ln2 | C. | 32ln2 | D. | 24ln2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com