精英家教网 > 高中数学 > 题目详情
13.若函数f(x)=ax2+(a2+1)x-a(a>0)的一个零点为x0,则x0的最大值为$\sqrt{2}$-1.

分析 利用求根公式求出x0,得出x0关于a的函数,令t=$\frac{a}{2}$+$\frac{1}{2a}$,则将函数转化为x0关于t的函数,利用导数求出函数的最大值即可.

解答 解:解方程得x=$\frac{-{a}^{2}-1±\sqrt{({a}^{2}+1)^{2}+4{a}^{2}}}{2a}$,
∴x0=$\frac{-{a}^{2}-1+\sqrt{{a}^{4}+6{a}^{2}+1}}{2a}$=-($\frac{a}{2}$+$\frac{1}{2a}$)+$\sqrt{\frac{{a}^{4}+6{a}^{2}+1}{4{a}^{2}}}$=-($\frac{a}{2}$+$\frac{1}{2a}$)+$\sqrt{(\frac{a}{2}+\frac{1}{2a})^{2}+1}$,
令t=$\frac{a}{2}$+$\frac{1}{2a}$,则t≥2$\sqrt{\frac{1}{4}}$=1,x0=-t+$\sqrt{{t}^{2}+1}$,
设g(t)=-t+$\sqrt{{t}^{2}+1}$,则g′(t)=-1+$\frac{t}{\sqrt{{t}^{2}+1}}$=$\frac{t-\sqrt{{t}^{2}+1}}{\sqrt{{t}^{2}+1}}$<0,
∴g(t)在[1,+∞)上单调递减,
∴g(t)≤g(1)=$\sqrt{2}$-1,
∴x0的最大值为$\sqrt{2}$-1,
故答案为:$\sqrt{2}$-1.

点评 本题考查了导数与函数单调性的关系,函数最值的计算,换元法解题思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.(1)判断函数f(x)=x3-x-1在区间[-1,2]上是否存在零点;
(2)求函数y=x+$\frac{2}{x}$-3的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在中学生综合素质评价某个维度的测评中,分“优秀”“合格”“尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并做出频数统计表如下:
表一:男生的测评结果
等级优秀合格尚待改进
频数15x5
表二:女生的测评结果
等级优秀合格尚待改进
频数153y
(1)根据题意求表一和表二中的x和y的值;并由表中统计数据写下面的2×2列联表;
 男生女生合计
优秀   
非优秀   
合计   
(2)根据所填的列联表判断是否有95%的把握认为“测评结果是否优秀与性别有关”.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
参考数据:
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C所对的边分别为a,b,c,若A=$\frac{π}{3}$,B=$\frac{π}{4}$且a=$\sqrt{3}$,则b=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为(  )
A.2+πB.2+4πC.6+πD.6+4π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在极坐标系中,曲线C的极坐标方程为$ρsin(θ-\frac{π}{4})=\sqrt{2}$,若以极点为原点,极轴所在直线为x轴建立直角坐标系,则C的直角坐标方程为x-y+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=6-x3,g(x)=ex-1,则这两个函数的导函数分别为(  )
A.f′(x)=6-3x2,g′(x)=exB.f′(x)=-3x2,g′(x)=ex-1
C.f′(x)=-3x2,g′(x)=exD.f′(x)=6-3x2,g′(x)=ex-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知{an}是公差不为零的等差数列,同时a9,a1,a5成等比数列,且a1+3a5+a9=20,则a13=28.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数y=f(x)满足:①对于任意的x∈R,都有f(x+2)=f(x-2);②函数y=f(x+2)是偶函数;③当x∈(0,2]时,f(x)=ex-$\frac{1}{x}$,a=f(-5),b=f($\frac{19}{2}$).c=f($\frac{41}{4}$),则a,b,c的大小关系是(  )
A.a<b<cB.c<a<bC.c<a<bD.b<a<c

查看答案和解析>>

同步练习册答案