精英家教网 > 高中数学 > 题目详情
4.在中学生综合素质评价某个维度的测评中,分“优秀”“合格”“尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并做出频数统计表如下:
表一:男生的测评结果
等级优秀合格尚待改进
频数15x5
表二:女生的测评结果
等级优秀合格尚待改进
频数153y
(1)根据题意求表一和表二中的x和y的值;并由表中统计数据写下面的2×2列联表;
 男生女生合计
优秀   
非优秀   
合计   
(2)根据所填的列联表判断是否有95%的把握认为“测评结果是否优秀与性别有关”.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
参考数据:
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

分析 (1)根据分层抽样原理知男生、女生抽取的人数,计算x、y的值;由表中统计数据填写列联表;
(2)计算观测值,对照临界值得出结论.

解答 解:(1)根据题意知,男生应抽取45×$\frac{500}{900}$=25人,
∴x=25-15-5=5;
女生应抽取45-25=20人,
∴y=20115-3=2;
由表中统计数据写2×2列联表如下;

 男生女生合计
优秀15 15 30 
非优秀 1015 
合计25 20 45 
(2)计算观测值K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{45{×(15×5-10×15)}^{2}}{25×20×30×15}$=1.125<3.841,
∴没有95%的把握认为“测评结果是否优秀与性别有关”.

点评 本题考查了分层抽样方法与独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义域为R的奇函数,且当x≥0时,f(x)=log2(x+1)+2x-a,则满足f(x2-3x-1)+9<0的实数x的取值范围是(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a=log85,b=log43,c=($\frac{4}{5}$)2,则a,b,c的大小关系是(  )
A.b>a>cB.a>b>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知△ABC中∠C=90°,AC=4,BC=2,D是BC的中点,E是AD的中点,P是△ABD(包括边界)内任一点,则$\overrightarrow{CP}$•$\overrightarrow{CE}$的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有下列一列数:1,8,27,64,      ,216,343,…,按照此规律,横线中的数应为(  )
A.75B.100C.125D.150

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某学校高三年级有学生500人,其中男生300名,女生200名,为了研究学生的数学成绩(单位:分)是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学成绩,然后按性别分为男、女两组,再将两组学生的数学成绩分成5组,分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中数学成线小于110分的学生中随机抽取2名学生,求2名学生恰好为一男一女的概率;
(2)若规定数学成绩不小于130分的学生为“数学尖子生”,得到如下数据表:请你根据已知条件完成下列2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
数学尖子生数学尖子生合计
男生
女生
合计100
参考数据:
 P(K2≥k20.15 0.10 0.05 0.025 0.01 0.005 
 k02.072 2.706 3.841 5.024 6.635 7.879 
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知服从正态分布N(μ,σ2)的随机变量,在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.27%,95.45%和99.73%,某中学为10000名员工定制校服,设学生的身高(单位:cm)服从正态分布N(173,25),则适合身高在158~188cm范围内学生穿的校服大约要定制9973套.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=ax2+(a2+1)x-a(a>0)的一个零点为x0,则x0的最大值为$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知△ABC的外接圆O的半径为5,AB=6,若$\overrightarrow{CH}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,则|$\overrightarrow{OH}$|的最小值是(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案