| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 作出向量示意图,利用垂径定理得出CH的长,从而得出OH的最小值.
解答
解:设AB中点为D,连结OD,则OD⊥AB,AD=$\frac{1}{2}$AB=3,OA=5,
∴OD=$\sqrt{O{A}^{2}-A{D}^{2}}$=4,$\overrightarrow{OD}$=$\frac{1}{2}$($\overrightarrow{OA}+\overrightarrow{OB}$),
∴CH=|$\overrightarrow{CH}$|=|$\overrightarrow{OA}+\overrightarrow{OB}$|=2OD=8,
又OC=5,
当O,C,H三点共线时,OH取得最小值CH-OC=3.
故选A.
点评 本题考查了平面向量在几何中的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
| 等级 | 优秀 | 合格 | 尚待改进 |
| 频数 | 15 | x | 5 |
| 等级 | 优秀 | 合格 | 尚待改进 |
| 频数 | 15 | 3 | y |
| 男生 | 女生 | 合计 | |
| 优秀 | |||
| 非优秀 | |||
| 合计 |
| P(K2>k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f′(x)=6-3x2,g′(x)=ex | B. | f′(x)=-3x2,g′(x)=ex-1 | ||
| C. | f′(x)=-3x2,g′(x)=ex | D. | f′(x)=6-3x2,g′(x)=ex-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | c<a<b | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com