精英家教网 > 高中数学 > 题目详情
14.已知△ABC的外接圆O的半径为5,AB=6,若$\overrightarrow{CH}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,则|$\overrightarrow{OH}$|的最小值是(  )
A.3B.4C.5D.6

分析 作出向量示意图,利用垂径定理得出CH的长,从而得出OH的最小值.

解答 解:设AB中点为D,连结OD,则OD⊥AB,AD=$\frac{1}{2}$AB=3,OA=5,
∴OD=$\sqrt{O{A}^{2}-A{D}^{2}}$=4,$\overrightarrow{OD}$=$\frac{1}{2}$($\overrightarrow{OA}+\overrightarrow{OB}$),
∴CH=|$\overrightarrow{CH}$|=|$\overrightarrow{OA}+\overrightarrow{OB}$|=2OD=8,
又OC=5,
当O,C,H三点共线时,OH取得最小值CH-OC=3.
故选A.

点评 本题考查了平面向量在几何中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在中学生综合素质评价某个维度的测评中,分“优秀”“合格”“尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并做出频数统计表如下:
表一:男生的测评结果
等级优秀合格尚待改进
频数15x5
表二:女生的测评结果
等级优秀合格尚待改进
频数153y
(1)根据题意求表一和表二中的x和y的值;并由表中统计数据写下面的2×2列联表;
 男生女生合计
优秀   
非优秀   
合计   
(2)根据所填的列联表判断是否有95%的把握认为“测评结果是否优秀与性别有关”.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
参考数据:
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=6-x3,g(x)=ex-1,则这两个函数的导函数分别为(  )
A.f′(x)=6-3x2,g′(x)=exB.f′(x)=-3x2,g′(x)=ex-1
C.f′(x)=-3x2,g′(x)=exD.f′(x)=6-3x2,g′(x)=ex-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知{an}是公差不为零的等差数列,同时a9,a1,a5成等比数列,且a1+3a5+a9=20,则a13=28.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设复数z满足z(1+i)=4,则|$\overline{z}$|等于(  )
A.2$\sqrt{2}$B.8C.2-2iD.2+2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(0,$\sqrt{3}$),离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程及焦距.
(Ⅱ)椭圆C的左焦点为F1,右顶点为A,经过点A的直线l与椭圆C的另一交点为P.若点B是直线x=2上异于点A的一个动点,且直线BF1⊥l,问:直线BP是否经过定点?若是,求出该定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)是定义在R上的偶函数,F(x)=(x+2)3f(x+2)-17,G(x)=-$\frac{17x+33}{x+2}$,若F(x)的图象与G(x)的图象的交点分别为(x1,y1),(x2,y2),…(xm,ym),则$\sum_{i=1}^{m}$(xi+yi)=-19m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数y=f(x)满足:①对于任意的x∈R,都有f(x+2)=f(x-2);②函数y=f(x+2)是偶函数;③当x∈(0,2]时,f(x)=ex-$\frac{1}{x}$,a=f(-5),b=f($\frac{19}{2}$).c=f($\frac{41}{4}$),则a,b,c的大小关系是(  )
A.a<b<cB.c<a<bC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a=(2,1)$,$\overrightarrow b=(m,-1)$,且$\overrightarrow a⊥(\overrightarrow a-\overrightarrow b)$,则实数m=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案