精英家教网 > 高中数学 > 题目详情
2.已知{an}是公差不为零的等差数列,同时a9,a1,a5成等比数列,且a1+3a5+a9=20,则a13=28.

分析 设{an}是公差d不为零的等差数列,运用等差数列的中项的性质和等差数列的通项公式,可得首项和公差的方程,解方程可得a1=-8,d=3,再由等差数列的通项公式即可得到所求值.

解答 解:{an}是公差d不为零的等差数列,
a9,a1,a5成等比数列,可得a12=a9a5
即有a12=(a1+8d)(a1+4d),
化为3a1+8d=0,①
a1+3a5+a9=20,
可得a1+3(a1+4d)+a1+8d=20,
即有a1+4d=4②
由①②可得a1=-8,d=3.
an=a1+(n-1)d=-8+3(n-1)=3n-11,n∈N*,
a13=3×13-11=28.
故答案为:28.

点评 本题考查等差数列的通项公式的运用,等比数列中项的性质,考查方程思想和运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知△ABC中∠C=90°,AC=4,BC=2,D是BC的中点,E是AD的中点,P是△ABD(包括边界)内任一点,则$\overrightarrow{CP}$•$\overrightarrow{CE}$的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=ax2+(a2+1)x-a(a>0)的一个零点为x0,则x0的最大值为$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=x3-3x2,若过点(2,n)可作三条直线与曲线y=f(x)相切,则实数n的取值范围是(  )
A.(-5,-4)B.(-5,0)C.(-4,0)D.(-5,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设(2x-1)4=a0+a1x+a2x2+a3x3+a4x4
(1)求a2的值
(2)求(a0+a2+a42-(a1+a32的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a,b∈R,a>b,若2a2-ab-b2-4=0,则2a-b的最小值为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知△ABC的外接圆O的半径为5,AB=6,若$\overrightarrow{CH}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,则|$\overrightarrow{OH}$|的最小值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=cos2x,二次函数g(x)满足g(0)=4,且对任意的x∈R,不等式-3x2-2x+3≤g(x)≤4x+6成立,则函数f(x)+g(x)的最大值为(  )
A.5B.6C.4D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x,y满足约束条件$\left\{\begin{array}{l}{x-2≥0}\\{x+y≤6}\\{2x-y≤6}\end{array}\right.$则目标函数z=$\frac{2y}{x+2}$的最大值为2.

查看答案和解析>>

同步练习册答案