精英家教网 > 高中数学 > 题目详情
7.已知a,b∈R,a>b,若2a2-ab-b2-4=0,则2a-b的最小值为$\frac{8}{3}$.

分析 a>b,2a2-ab-b2-4=0,可得(2a+b)(a-b)=4.2a-b=$\frac{1}{3}[(2a+b)+4(a-b)]$,利用基本不等式的性质即可得出.

解答 解:∵a>b,2a2-ab-b2-4=0,∴(2a+b)(a-b)=4.
令m(2a+b)+n(a-b)=2a-b,解得,m=$\frac{1}{3}$,n=$\frac{4}{3}$.
则2a-b=$\frac{1}{3}[(2a+b)+4(a-b)]$≥$\frac{1}{3}×2\sqrt{(2a+b)•4(a-b)}$=$\frac{8}{3}$,
当且仅当2a+b=4(a-b)=4,即a=$\frac{5}{3}$,b=$\frac{2}{3}$时取等号.
∴2a-b的最小值为$\frac{8}{3}$.
故答案为:$\frac{8}{3}$.

点评 本题考查了基本不等式的性质、方程思想、转化方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若定义在(-∞,1)∪(1,+∞)上的函数y=f(x)满足f(1+x)=f(1-x),且当x∈(1,+∞)时,f(x)=|$\frac{2x-3}{x-1}$|则下列结论中错误的是(  )
A.存在t∈R,使f(x)≥2在[t-$\frac{1}{2}$,t+$\frac{1}{2}$]上恒成立
B.存在t∈R,使0≤f(x)≤2在[t-$\frac{1}{2}$,t+$\frac{1}{2}$]上恒成立
C.存在t∈R,使f(x)在[t-$\frac{1}{2}$,t+$\frac{1}{2}$]上始终存在反函数
D.存在t∈R+,使f(x)在[t-$\frac{1}{2}$,t+$\frac{1}{2}$]上始终存在反函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在极坐标系中,曲线C的极坐标方程为$ρsin(θ-\frac{π}{4})=\sqrt{2}$,若以极点为原点,极轴所在直线为x轴建立直角坐标系,则C的直角坐标方程为x-y+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算定积分:
(1)${∫}_{1}^{2}$$\frac{1}{x}$dx
(2)${∫}_{0}^{\frac{π}{6}}$4cosxdx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知{an}是公差不为零的等差数列,同时a9,a1,a5成等比数列,且a1+3a5+a9=20,则a13=28.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设不等式$\left\{\begin{array}{l}{y>1}\\{2x-y≥0}\end{array}\right.$,表示的平面区域为D.若曲线y=ax2+1上存在无数个点在D内,则实数a的取值范围是(  )
A.(0,2)B.(1,+∞)C.(0,1)D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(0,$\sqrt{3}$),离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程及焦距.
(Ⅱ)椭圆C的左焦点为F1,右顶点为A,经过点A的直线l与椭圆C的另一交点为P.若点B是直线x=2上异于点A的一个动点,且直线BF1⊥l,问:直线BP是否经过定点?若是,求出该定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a,b,c分别为角A,B,C的对边,$B=\frac{2π}{3}$,若a2+c2=4ac,则$\frac{{sin({A+C})}}{sinAsinC}$=$\frac{10\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=$\frac{{e}^{x}-a}{x}$-alnx(e为自然对数的底数).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设g(x)=ex(x2-3x+3),当a≤1时,若存在x1∈(0,+∞),使得对任意x2∈(0,+∞),都有f(x1)≤g(x2),求a的取值范围.

查看答案和解析>>

同步练习册答案