精英家教网 > 高中数学 > 题目详情
1.在△ABC中,角A,B,C所对的边分别为a,b,c,若A=$\frac{π}{3}$,B=$\frac{π}{4}$且a=$\sqrt{3}$,则b=$\sqrt{2}$.

分析 利用正弦定理即可得出.

解答 解:由正弦定理可得:$\frac{\sqrt{3}}{sin\frac{π}{3}}$=$\frac{b}{sin\frac{π}{4}}$,解得b=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了正弦定理、三角函数求值,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.现有10个不同的产品,其中4个次品,6个正品.现每次取其中一个进行测试,直到4个次品全测完为止,若最后一个次品恰好在第五次测试时被发现,则该情况出现的概率是$\frac{2}{105}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知△ABC中∠C=90°,AC=4,BC=2,D是BC的中点,E是AD的中点,P是△ABD(包括边界)内任一点,则$\overrightarrow{CP}$•$\overrightarrow{CE}$的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某学校高三年级有学生500人,其中男生300名,女生200名,为了研究学生的数学成绩(单位:分)是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学成绩,然后按性别分为男、女两组,再将两组学生的数学成绩分成5组,分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中数学成线小于110分的学生中随机抽取2名学生,求2名学生恰好为一男一女的概率;
(2)若规定数学成绩不小于130分的学生为“数学尖子生”,得到如下数据表:请你根据已知条件完成下列2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
数学尖子生数学尖子生合计
男生
女生
合计100
参考数据:
 P(K2≥k20.15 0.10 0.05 0.025 0.01 0.005 
 k02.072 2.706 3.841 5.024 6.635 7.879 
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知服从正态分布N(μ,σ2)的随机变量,在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.27%,95.45%和99.73%,某中学为10000名员工定制校服,设学生的身高(单位:cm)服从正态分布N(173,25),则适合身高在158~188cm范围内学生穿的校服大约要定制9973套.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点$A(\sqrt{3},0)$,点P是圆${(x+\sqrt{3})^2}+{y^2}=16$上的任意一点,设Q为该圆的圆心,并且线段PA的垂直平分线与直线PQ交于点E.
(1)求点E的轨迹方程;
(2)已知M,N两点的坐标分别为(-2,0),(2,0),点T是直线x=4上的一个动点,且直线TM,TN分别交(1)中点E的轨迹于C,D两点(M,N,C,D四点互不相同),证明:直线CD恒过一定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=ax2+(a2+1)x-a(a>0)的一个零点为x0,则x0的最大值为$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=x3-3x2,若过点(2,n)可作三条直线与曲线y=f(x)相切,则实数n的取值范围是(  )
A.(-5,-4)B.(-5,0)C.(-4,0)D.(-5,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=cos2x,二次函数g(x)满足g(0)=4,且对任意的x∈R,不等式-3x2-2x+3≤g(x)≤4x+6成立,则函数f(x)+g(x)的最大值为(  )
A.5B.6C.4D.7

查看答案和解析>>

同步练习册答案