分析 (1)利用椭圆的定义即可得出E的轨迹方程;
(2)设CD方程x=my+n,代入椭圆方程消元,得出C,D坐标的关系,求出TM,TN的方程,根据交点横坐标为4得出恒等式,从而得出n的值,即得出直线CD的定点坐标.
解答 解:(1)∵|EA|+|QE|=|EQ|+|PE|=4,且|QA|=2$\sqrt{3}$<4,
∴点E的轨迹是以A,Q为焦点的椭圆,
设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,则2a=4,c=$\sqrt{3}$,∴a=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=1.
所以点E的轨迹方程为:$\frac{x^2}{4}+{y^2}=1$.
(2)依题意设直线CD的方程为:x=my+n,
代入椭圆方程x2+4y2=4得:(4+m2)y2+2mny+(n2-4)=0
设C(x1,y1),D(x2,y2),则${y_1}+{y_2}=-\frac{2mn}{{4+{m^2}}}$,${y_1}{y_2}=\frac{{{n^2}-4}}{{4+{m^2}}}$.
∵直线TM方程为$y=\frac{y_1}{{{x_1}+2}}(x+2)$,直线TN方程为$y=\frac{y_2}{{{x_2}-2}}(x-2)$,
由题知TM,TN的交点T的横坐标为4,∴$\frac{{3{y_1}}}{{{x_1}+2}}=\frac{y_2}{{{x_2}-2}}$,即3y1(x2-2)=y2(x1+2),
即:3y1(my2+n-2)=y2(my1+n+2),整理得:2my1y2=(n+2)y2-3(n-2)y1,
∴$\frac{{2m({n^2}-4)}}{{4+{m^2}}}=(n+2)(\frac{-2mn}{{4+{m^2}}}-{y_1})-3(n-2){y_1}$
化简可得:$(n-1)[m(n+2)+{y_1}(4+{m^2})]=0$.
∵当m,y1变化时,上式恒成立,∴n=1,
∴直线CD恒过一定点(1,0).
点评 本题考查了椭圆的定义,直线与椭圆的位置关系,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 既非充分又非必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在t∈R,使f(x)≥2在[t-$\frac{1}{2}$,t+$\frac{1}{2}$]上恒成立 | |
| B. | 存在t∈R,使0≤f(x)≤2在[t-$\frac{1}{2}$,t+$\frac{1}{2}$]上恒成立 | |
| C. | 存在t∈R,使f(x)在[t-$\frac{1}{2}$,t+$\frac{1}{2}$]上始终存在反函数 | |
| D. | 存在t∈R+,使f(x)在[t-$\frac{1}{2}$,t+$\frac{1}{2}$]上始终存在反函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com