| A. | $\sqrt{3}$ | B. | 2 | C. | $2\sqrt{3}$ | D. | $4\sqrt{3}$ |
分析 由题意可知:则△AOF为等腰三角形,且OB⊥AF,根据对称性求得B和A点坐标,代入渐近线方程,即可求得b2=3a2,根据双曲线的离心率公式,即可求得答案.
解答 解:双曲线的渐近线方程y=±$\frac{b}{a}$x,由题意可知:设A(m,n),由B为FA的中点,且OA=c,
则△AOF为等腰三角形,且OB⊥AF,
由A关于渐近线y=$\frac{b}{a}$x对称,B($\frac{m+c}{2}$,$\frac{n}{2}$)则$\frac{n-0}{m-c}$=-$\frac{a}{b}$,且$\frac{n}{2}$=$\frac{b}{a}$×$\frac{m+c}{2}$,
解得:m=$\frac{{a}^{2}-{b}^{2}}{c}$,n=$\frac{2ab}{c}$,
由A在渐近线y=-$\frac{b}{a}$x,则$\frac{2ab}{c}$=-$\frac{b}{a}$×$\frac{{a}^{2}-{b}^{2}}{c}$,整理得b2=3a2,
双曲线的离心率e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=2,
∴双曲线的离心率e=2,
故选B.![]()
点评 本题考查双曲线的简单几何性质,双曲线的渐近线方程及离心率公式,考查计算能力,考查数形结合思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | c<a<b | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | {0,1} | C. | {1,2} | D. | {1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{1}{4{e}^{2}}$) | B. | (-∞,-$\frac{1}{e}$) | ||
| C. | (-∞,-$\frac{1}{e}$)∪(-$\frac{1}{e}$,-$\frac{1}{4{e}^{2}}$) | D. | (-e,-$\frac{1}{4{e}^{2}}$)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)是偶函数,在(0,+∞)内是增函数 | B. | f(x)是偶函数,在(0,+∞)内是减函数 | ||
| C. | f(x)是奇函数,在(0,+∞)内是增函数 | D. | f(x)是奇函数,在(0,+∞)内是减函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com