精英家教网 > 高中数学 > 题目详情
20.若函数$f(x)=a({x-2}){e^x}+lnx+\frac{1}{x}$在(0,2)上存在两个极值点,则a的取值范围是(  )
A.(-∞,-$\frac{1}{4{e}^{2}}$)B.(-∞,-$\frac{1}{e}$)
C.(-∞,-$\frac{1}{e}$)∪(-$\frac{1}{e}$,-$\frac{1}{4{e}^{2}}$)D.(-e,-$\frac{1}{4{e}^{2}}$)∪(1,+∞)

分析 由题意可知:f′(x)=a(x-1)ex+$\frac{1}{x}$-$\frac{1}{{x}^{2}}$在(0,2)上有两个零点,a(x-1)ex+$\frac{x-1}{{x}^{2}}$=0,有两个根,即可求得a=-$\frac{1}{{e}^{x}{x}^{2}}$,根据函数的单调性即可求得a的取值范围.

解答 解:函数f(x)=a(x-2)ex+lnx+$\frac{1}{x}$在(0,2)上存在两个极值点,
等价于f′(x)=a(x-1)ex+$\frac{1}{x}$-$\frac{1}{{x}^{2}}$在(0,2)上有两个零点,
令f′(x)=0,则a(x-1)ex+$\frac{x-1}{{x}^{2}}$=0,
即(x-1)(aex+$\frac{1}{{x}^{2}}$)=0,
∴x-1=0或aex+$\frac{1}{{x}^{2}}$=0,
∴x=1满足条件,且aex+$\frac{1}{{x}^{2}}$=0(其中x≠1且x∈(0,2));
∴a=-$\frac{1}{{e}^{x}{x}^{2}}$,其中x∈(0,1)∪(1,2);
设t(x)=ex•x2,其中x∈(0,1)∪(1,2);
则t′(x)=(x2+2x)ex>0,
∴函数t(x)是单调增函数,
∴t(x)∈(0,e)∪(e,4e2),
∴a∈(-∞,-$\frac{1}{e}$)∪(-$\frac{1}{e}$,-$\frac{1}{4{e}^{2}}$).
故选C.

点评 本题考查了函数导数的综合应用问题,考查函数极值与零点的应用问题,考查转化思想与计算能力,是综合性题目,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=x3-3x2,若过点(2,n)可作三条直线与曲线y=f(x)相切,则实数n的取值范围是(  )
A.(-5,-4)B.(-5,0)C.(-4,0)D.(-5,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=cos2x,二次函数g(x)满足g(0)=4,且对任意的x∈R,不等式-3x2-2x+3≤g(x)≤4x+6成立,则函数f(x)+g(x)的最大值为(  )
A.5B.6C.4D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,过点F(c,0)作直线交双曲线C的两条渐近线于A,B两点,若B为FA的中点,且OA=c,则双曲线的离心率为(  )
A.$\sqrt{3}$B.2C.$2\sqrt{3}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)是定义在R上的函数,它的图象关于点(1,0)对称,当x≤1时,f(x)=2xe-x(e为自然对数的底数),则f(2+3ln2)的值为(  )
A.48ln2B.40ln2C.32ln2D.24ln2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设i是虚数单位,复数z满足z•(1+$\sqrt{2}$i)=-$\sqrt{2}$i,则复数z的虚部等于(  )
A.-$\frac{\sqrt{2}}{3}$B.$\sqrt{2}$C.2D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x,y满足约束条件$\left\{\begin{array}{l}{x-2≥0}\\{x+y≤6}\\{2x-y≤6}\end{array}\right.$则目标函数z=$\frac{2y}{x+2}$的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等比数列{an}的前n项和Sn=$\frac{1}{2}•{3^{n+1}}$+c(c为常数),若λan≤3+S2n恒成立,则实数λ的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={x|-1<x≤1},B={x|0<x≤2},则A∪B={x|-1<x≤2}.

查看答案和解析>>

同步练习册答案