| A. | (-∞,-$\frac{1}{4{e}^{2}}$) | B. | (-∞,-$\frac{1}{e}$) | ||
| C. | (-∞,-$\frac{1}{e}$)∪(-$\frac{1}{e}$,-$\frac{1}{4{e}^{2}}$) | D. | (-e,-$\frac{1}{4{e}^{2}}$)∪(1,+∞) |
分析 由题意可知:f′(x)=a(x-1)ex+$\frac{1}{x}$-$\frac{1}{{x}^{2}}$在(0,2)上有两个零点,a(x-1)ex+$\frac{x-1}{{x}^{2}}$=0,有两个根,即可求得a=-$\frac{1}{{e}^{x}{x}^{2}}$,根据函数的单调性即可求得a的取值范围.
解答 解:函数f(x)=a(x-2)ex+lnx+$\frac{1}{x}$在(0,2)上存在两个极值点,
等价于f′(x)=a(x-1)ex+$\frac{1}{x}$-$\frac{1}{{x}^{2}}$在(0,2)上有两个零点,
令f′(x)=0,则a(x-1)ex+$\frac{x-1}{{x}^{2}}$=0,
即(x-1)(aex+$\frac{1}{{x}^{2}}$)=0,
∴x-1=0或aex+$\frac{1}{{x}^{2}}$=0,
∴x=1满足条件,且aex+$\frac{1}{{x}^{2}}$=0(其中x≠1且x∈(0,2));
∴a=-$\frac{1}{{e}^{x}{x}^{2}}$,其中x∈(0,1)∪(1,2);
设t(x)=ex•x2,其中x∈(0,1)∪(1,2);
则t′(x)=(x2+2x)ex>0,
∴函数t(x)是单调增函数,
∴t(x)∈(0,e)∪(e,4e2),
∴a∈(-∞,-$\frac{1}{e}$)∪(-$\frac{1}{e}$,-$\frac{1}{4{e}^{2}}$).
故选C.
点评 本题考查了函数导数的综合应用问题,考查函数极值与零点的应用问题,考查转化思想与计算能力,是综合性题目,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-5,-4) | B. | (-5,0) | C. | (-4,0) | D. | (-5,-3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 4 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | $2\sqrt{3}$ | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 48ln2 | B. | 40ln2 | C. | 32ln2 | D. | 24ln2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{2}}{3}$ | B. | $\sqrt{2}$ | C. | 2 | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com