| A. | -$\frac{\sqrt{2}}{3}$ | B. | $\sqrt{2}$ | C. | 2 | D. | -$\frac{2}{3}$ |
分析 z•(1+$\sqrt{2}$i)=-$\sqrt{2}$i,可得z•(1+$\sqrt{2}$i)(1-$\sqrt{2}$i)=-$\sqrt{2}$i(1-$\sqrt{2}$i),化简即可得出.
解答 解:z•(1+$\sqrt{2}$i)=-$\sqrt{2}$i,∴z•(1+$\sqrt{2}$i)(1-$\sqrt{2}$i)=-$\sqrt{2}$i(1-$\sqrt{2}$i),
∴3z=-2-$\sqrt{2}$i,即z=-$\frac{2}{3}$-$\frac{\sqrt{2}}{3}$i.
则复数z的虚部等于-$\frac{\sqrt{2}}{3}$.
故选:A.
点评 本题考查了复数的运算法则、虚部的定义、共轭复数的定义,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | {0,1} | C. | {1,2} | D. | {1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{1}{4{e}^{2}}$) | B. | (-∞,-$\frac{1}{e}$) | ||
| C. | (-∞,-$\frac{1}{e}$)∪(-$\frac{1}{e}$,-$\frac{1}{4{e}^{2}}$) | D. | (-e,-$\frac{1}{4{e}^{2}}$)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{5}{4}$ | C. | $\frac{\sqrt{7}}{2}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1,0,1,2} | B. | {-1,0} | C. | {-1,0,1} | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com