精英家教网 > 高中数学 > 题目详情
14.设集合A={-1,0,1,2},B={x|-2≤x≤1},则A∩B=(  )
A.{-2,-1,0,1,2}B.{-1,0}C.{-1,0,1}D.{0,1,2}

分析 利用交集定义直接求解.

解答 解:集合A={-1,0,1,2},B={x|-2≤x≤1},
∴A∩B={-1,0,1}.
故选:C.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.直线ax+by+1=0与圆x2+y2=1相切,则a+b+ab的最大值为(  )
A.1B.-1C.$\sqrt{2}$+$\frac{1}{2}$D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设i是虚数单位,复数z满足z•(1+$\sqrt{2}$i)=-$\sqrt{2}$i,则复数z的虚部等于(  )
A.-$\frac{\sqrt{2}}{3}$B.$\sqrt{2}$C.2D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{3}$,过右焦点F2(c,0)垂直于x轴的直线与椭圆交于A,B两点且|AB|=$\frac{4\sqrt{3}}{3}$,又过左焦点F1(-c,0)任作直线l交椭圆于点M
(1)求椭圆C的方程
(2)椭圆C上两点A,B关于直线l对称,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等比数列{an}的前n项和Sn=$\frac{1}{2}•{3^{n+1}}$+c(c为常数),若λan≤3+S2n恒成立,则实数λ的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.数列{an}中,若存在ak,使得“ak>ak-1且ak>ak+1”成立(其中k≥2,k∈N*),ak则称为{an}的一个H值.现有如下数列:
①an=1-2n
②an=sinn
③an=$\frac{n-2}{{e}^{n-3}}$
④an=lnn-n
则存在H值的数列的序号为(  )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线C的中心在原点,焦点在y轴上,若双曲线C的一条渐近线与直线$\sqrt{2}$x-y-1=0平行,则双曲线C的离心率为(  )
A.$\frac{\sqrt{6}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为(  )
A.(x-2)2+(y+1)2=3B.(x+2)2+(y-1)2=3C.(x-2)2+(y+1)2=9D.(x+2)2+(y-1)2=9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,三棱柱ABC-A1B1C1的底面是边长为2正三角形,D是A1C1的中点,且AA1⊥平面ABC,AA1=3.
(Ⅰ)求证:A1B∥平面B1DC;
(Ⅱ)求二面角D-B1C-C1的余弦值.

查看答案和解析>>

同步练习册答案