精英家教网 > 高中数学 > 题目详情
14.若命题p:对任意的x∈R,都有x3-x2+1<0,则¬p为(  )
A.不存在x∈R,使得x3-x2+1<0B.存在x∈R,使得x3-x2+1<0
C.对任意的x∈R,都有x3-x2+1≥0D.存在x∈R,使得x3-x2+1≥0

分析 利用全称命题的否定是特称命题,去判断.

解答 解:因为命题是全称命题,根据全称命题的否定是特称命题,
所以命题的否定¬p为:存在x∈R,使得x3-x2+1≥0
故选:D

点评 本题主要考查全称命题的否定,要求掌握全称命题的否定是特称命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=lnx+2x-3,则f(x)的零点所在区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=ax2+(b-2a)x-2b为偶函数,且在(0,+∞)单调递减,则f(x)>0的解集为{x|-2<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆F1:(x+$\sqrt{3}$)2+y2=9与圆F2:(x-$\sqrt{3}$)2+y2=1,以圆F1、F2的圆心分别为左右焦点的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过两圆的交点.
(1)求椭圆C的方程;
(2)直线x=2$\sqrt{3}$上有两点M、N(M在第一象限)满足$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{2}N}$=0,直线MF1与NF2交于点Q,当|MN|最小时,求线段MQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.要得到函数f(x)=cos2x的图象,只需将函数g(x)=sin2x的图象(  )
A.向左平移$\frac{1}{2}$个周期B.向右平移$\frac{1}{2}$个周期
C.向左平移$\frac{1}{4}$个周期D.向右平移$\frac{1}{4}$个周期

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.要得到函数f(x)=sin2x的图象,只需将函数g(x)=cos2x的图象(  )
A.向左平移$\frac{π}{2}$个周期B.向右平移$\frac{π}{2}$个周期
C.向左平移$\frac{π}{4}$个周期D.向右平移$\frac{π}{4}$个周期

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何”其意思为“今有人持金出五关,第1关收税金$\frac{1}{2}$,第2关收税金$\frac{1}{3}$,第3关收税金$\frac{1}{4}$,第4关收税金$\frac{1}{5}$,第5关收税金$\frac{1}{6}$,5关所收税金之和,恰好1斤重,设这个人原本持金为x,按此规律通过第8关,”则第8关需收税金为$\frac{1}{72}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA,kB,规定φ(A,B)=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$叫做曲线在点A与点B之间的“弯曲度”.设曲线y=ex上不同的两点A(x1,y1),B(x2,y2),且x1-x2=1,若t•φ(A,B)<3恒成立,则实数t的取值范围是(  )
A.(-∞,3]B.(-∞,2]C.(-∞,1]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在三棱柱ABC-A1B1C1中,侧棱与底面垂直,BC=CC1,当底面△A1B1C1满足条件A1C1⊥C1B1时,有AB1⊥BC1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).

查看答案和解析>>

同步练习册答案