分析 (1)由题意知,此分段函数来分界点处的函数值相等,所以由此可以得到一次函数解析式.
(2)分段函数求最大值,只需分段求解之后找到最大一个即可.
解答 解:(1)当20≤x≤140时,车流速度v(x)是车流密度x的一次函数.
可以设为v(x)=kx+b,
∵当x=140辆/千米时,此时车流速度v=0;
当x=20辆/千米时,车流速度v=60千米/小时,
∴v(20)=20k+b=60,
v(140)=140k+b=0,
∴k=-$\frac{1}{2}$,b=70,
∴v(x)=-$\frac{1}{2}$x+70,
∴v(x)=$\left\{\begin{array}{l}{60}&{v≤20}\\{-\frac{1}{2}x+70}&{20<x<140}\\{0}&{x≥140}\end{array}\right.$.
(2)f(x)=x•v(x)=$\left\{\begin{array}{l}{60x}&{x≤20}\\{-\frac{1}{2}{x}^{2}+70x}&{20<x<140}\\{0}&{x≥140}\end{array}\right.$,
∴f(x)的最大值为当x=70时,最大为2450辆/小时.
点评 本题考查分段函数解析式以及分段函数求最大值问题,只需分段求解之后找到最大一个即可.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{4}π$ | B. | $\frac{3}{4}π$ | C. | $\frac{1}{4}π$ | D. | $\frac{7}{4}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{3}$π | B. | $\frac{8\sqrt{2}}{3}$π | C. | $\sqrt{6}$π | D. | 8$\sqrt{6}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-12] | B. | (-∞,-4] | C. | (-∞,8] | D. | $({-∞,\frac{31}{2}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(2x)=2g2(x)+1 | B. | f2(x)-g2(x)=1 | C. | f2(x)+g2(x)=f(2x) | D. | f(x+y)=f(x)f(y)-g(x)g(y) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com