精英家教网 > 高中数学 > 题目详情
8.函数y=lnx与y=-2x+6的图象有交点P(x0,y0),若x0∈(k,k+1),则整数k的值为(  )
A.1B.2C.3D.4

分析 可判断函数f(x)=lnx-6+2x连续,从而由零点的判定定理求解.

解答 解:设f(x)=lnx+2x-6,
因为函数f(x)=lnx-6+2x连续,
且f(2)=ln2-6+4=ln2-2<0,
f(3)=ln3-6+6=ln3>0;
故函数y=lnx-6+2x的零点在(2,3)之间,
故x0∈(2,3);
∵x0∈(k,k+1),
∴k=2,
故选B.

点评 本题考查了函数的零点的判定定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,ABCD是边长为a的正方形,PA⊥平面ABCD.
(1)若PA=AB,点E是PC的中点,求直线AE与平面PCD所成角的正弦值;
(2)若BE⊥PC且交点为E,BE=$\frac{\sqrt{6}}{3}$a,G为CD的中点,线段AB上是否存在点F,使得EF∥平面PAG?若存在,求AF的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于正整数n,设曲线y=xn(2-x)在x=2处的切线与y轴交点的纵坐标为an,则数列{an}的前n项和为Sn=2n+2-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图的频率分
布直方图.
(1)求图中实数a的值;
(2)若该校高一年级共有学生1000人,试估计该校高一年级期中考试数学成绩不低于60分的人数.
(3)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这2名学生的数学成绩之差的绝对值大于10的槪率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设α、β为不重合的平面,m,n为不重合的直线,则下列命题正确的是(  )
A.若m∥α,n∥β,m⊥n,则α⊥βB.若m∥n,n∥α,α∥β,则m∥β
C.若α⊥β,α∩β=n,m⊥n,则m⊥αD.若α∩β=n,m∥α,m∥β,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=$\frac{\sqrt{lg(x+2)}}{x-1}$的定义域是[-1,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过点(0,2b)的直线l与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的一条斜率为正值的渐近线平行,若双曲线C的右支上的点到直线l的距离恒大于b,则双曲线C的离心率的取值范围是(  )
A.(1,2]B.(2,+∞)C.(1,2)D.(1,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“$\frac{1}{x}$<3”是“x>$\frac{1}{3}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知平面直角坐标系xOy中,以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的参数方程为$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2\sqrt{3}+2sinα}\end{array}\right.$(α为参数),直线l的极坐标方程为ρcos($θ-\frac{π}{3}$)=-3.
(1)把曲线C的参数方程化为普通方程和把直线l的极坐标方程化为直角坐标方程;
(2)若直线m:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数)与曲线C交于A,B两点,与直线l交于Q点,记线段AB的中点为P,求|OP|•|OQ|(O为坐标原点)的值.

查看答案和解析>>

同步练习册答案