18£®ÒÑÖªÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+2cos¦Á}\\{y=2\sqrt{3}+2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨$¦È-\frac{¦Ð}{3}$£©=-3£®
£¨1£©°ÑÇúÏßCµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³ÌºÍ°ÑÖ±ÏßlµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÖ±Ïßm£º$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©ÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬ÓëÖ±Ïßl½»ÓÚQµã£¬¼ÇÏß¶ÎABµÄÖеãΪP£¬Çó|OP|•|OQ|£¨OÎª×ø±êÔ­µã£©µÄÖµ£®

·ÖÎö £¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+2cos¦Á}\\{y=2\sqrt{3}+2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃcos2¦Á+sin2¦Á=1¿ÉµÃÇúÏßCµÄÆÕͨ·½³Ì£®Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨$¦È-\frac{¦Ð}{3}$£©=-3£¬Õ¹¿ªÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼´¿ÉµÃ³ö£®
£¨2£©Ö±Ïßm£º$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©»¯Îª£ºy=xtan¦Á£¬ÓëÖ±ÏßlµÄ·½³ÌÁªÁ¢½âµÃQ£¬¿ÉµÃ|OQ|£®Ô²ÐÄC$£¨2£¬2\sqrt{3}£©$µ½Ö±ÏßmµÄ¾àÀëd=$\frac{|2tan¦Á-2\sqrt{3}|}{\sqrt{1+ta{n}^{2}¦Á}}$£¬|OC|¨T4£®ÀûÓÃ|OP|=$\sqrt{|OC{|}^{2}-{d}^{2}}$£®¿ÉµÃ|OP|•|OQ|£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+2cos¦Á}\\{y=2\sqrt{3}+2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃcos2¦Á+sin2¦Á=1¿ÉµÃ£º$£¨x-2£©^{2}+£¨y-2\sqrt{3}£©^{2}$=4£®
Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨$¦È-\frac{¦Ð}{3}$£©=-3£¬Õ¹¿ª¿ÉµÃ£º$\frac{1}{2}¦Ñcos¦È+\frac{\sqrt{3}}{2}¦Ñsin¦È$=-3£¬»¯Îª$x+\sqrt{3}$y+6=0£®
£¨2£©Ö±Ïßm£º$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©»¯Îª£ºy=xtan¦Á£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=xtan¦Á}\\{x+\sqrt{3}y+6=0}\end{array}\right.$£¬½âµÃQ$£¨\frac{-6}{1+\sqrt{3}tan¦Á}£¬\frac{-6tan¦Á}{1+\sqrt{3}tan¦Á}£©$£¬
¡à|OQ|=$\sqrt{£¨\frac{-6}{1+\sqrt{3}tan¦Á}£©^{2}+£¨\frac{-6tan¦Á}{1+\sqrt{3}tan¦Á}£©^{2}}$=$\frac{6}{cos¦Á+\sqrt{3}sin¦Á}$£®
Ô²ÐÄC$£¨2£¬2\sqrt{3}£©$µ½Ö±ÏßmµÄ¾àÀëd=$\frac{|2tan¦Á-2\sqrt{3}|}{\sqrt{1+ta{n}^{2}¦Á}}$£¬|OC|=$\sqrt{{2}^{2}+£¨2\sqrt{3}£©^{2}}$=4£®
¡à|OP|=$\sqrt{|OC{|}^{2}-{d}^{2}}$=$\frac{2|\sqrt{3}tan¦Á-1|}{\sqrt{1+ta{n}^{2}¦Á}}$£®
¡à|OP|•|OQ|=$\frac{2|\sqrt{3}tan¦Á-1|}{\sqrt{1+ta{n}^{2}¦Á}}$•$\frac{6}{cos¦Á+\sqrt{3}sin¦Á}$=$\frac{12|\sqrt{3}tan¦Á-1|}{1+\sqrt{3}tan¦Á}$£®

µãÆÀ ±¾Ì⿼²éÁËÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢¹´¹É¶¨Àí£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®º¯Êýy=lnxÓëy=-2x+6µÄͼÏóÓн»µãP£¨x0£¬y0£©£¬Èôx0¡Ê£¨k£¬k+1£©£¬ÔòÕûÊýkµÄֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®º¯Êýf£¨x£©=3sin£¨2x-$\frac{¦Ð}{3}$£©µÄͼÏóµÄÒ»Ìõ¶Ô³ÆÖáÊÇ£¨¡¡¡¡£©
A£®$x=\frac{¦Ð}{3}$B£®$x=\frac{5¦Ð}{12}$C£®$x=\frac{¦Ð}{2}$D£®$x=\frac{5¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êý$f£¨x£©=\frac{1}{x}$£®
£¨¢ñ£©Çóf£¨x£©¶¨ÒåÓò£»
£¨¢ò£©Ö¤Ã÷f£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÏß¶ÎPD´¹Ö±ÓÚÕý·½ÐÎABCDËùÔÚÆ½Ã棬DΪ´¹×㣬|PD|=5cm£¬|AB|=8cm£¬Á¬½ÓPA¡¢PB¡¢PC£®
£¨1£©ÇóÖ¤£ºÆ½ÃæPBC¡ÍÆ½ÃæPDC£»
£¨2£©ÇóPBÓëÆ½ÃæABCDËù³É½ÇµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èçͼ£¬ÔÚÈýÀâÖùA1B1C1-A2B2C2ÖУ¬¸÷²àÀâ¾ù´¹Ö±ÓÚµ×Ãæ£¬¡ÏA1B1C1=90¡ã£¬A1B1=B1C1=3£¬C1M=2B1N=2£¬ÔòÖ±ÏßB1C1ÓëÆ½ÃæA1MNËù³É½ÇµÄÕýÏÒֵΪ$\frac{\sqrt{11}}{11}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑ֪ʵÊýx£¬yÂú×ã4x2+y2+3xy=1£¬Ôò2x+yµÄ×î´óֵΪ$\frac{{2\sqrt{14}}}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÈýÕŽ±È¯ÖÐÓÐ2ÕÅÊÇÓн±µÄ£¬¼×¡¢ÒÒÁ½ÈË´ÓÖи÷³éÒ»ÕÅ£¨³é³öºó²»·Å»Ø£©£¬¼×Ïȳ飬ȻºóÒҳ飬Éè¼×Öн±µÄ¸ÅÂÊΪP1£¬ÒÒÖн±µÄ¸ÅÂÊΪP2£¬ÄÇô£¨¡¡¡¡£©
A£®P1=P2B£®P1£¼P2
C£®P1£¾P2D£®P1£¬P2µÄ´óСÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÔÚÀⳤΪ1µÄÕý·½ÌåABCD-A1B1C1D1ÖУ¬µãBµ½A1C1µÄ¾àÀëÊÇ$\frac{\sqrt{6}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸