·ÖÎö £¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+2cos¦Á}\\{y=2\sqrt{3}+2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃcos2¦Á+sin2¦Á=1¿ÉµÃÇúÏßCµÄÆÕͨ·½³Ì£®Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨$¦È-\frac{¦Ð}{3}$£©=-3£¬Õ¹¿ªÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼´¿ÉµÃ³ö£®
£¨2£©Ö±Ïßm£º$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©»¯Îª£ºy=xtan¦Á£¬ÓëÖ±ÏßlµÄ·½³ÌÁªÁ¢½âµÃQ£¬¿ÉµÃ|OQ|£®Ô²ÐÄC$£¨2£¬2\sqrt{3}£©$µ½Ö±ÏßmµÄ¾àÀëd=$\frac{|2tan¦Á-2\sqrt{3}|}{\sqrt{1+ta{n}^{2}¦Á}}$£¬|OC|¨T4£®ÀûÓÃ|OP|=$\sqrt{|OC{|}^{2}-{d}^{2}}$£®¿ÉµÃ|OP|•|OQ|£®
½â´ð ½â£º£¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+2cos¦Á}\\{y=2\sqrt{3}+2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃcos2¦Á+sin2¦Á=1¿ÉµÃ£º$£¨x-2£©^{2}+£¨y-2\sqrt{3}£©^{2}$=4£®
Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos£¨$¦È-\frac{¦Ð}{3}$£©=-3£¬Õ¹¿ª¿ÉµÃ£º$\frac{1}{2}¦Ñcos¦È+\frac{\sqrt{3}}{2}¦Ñsin¦È$=-3£¬»¯Îª$x+\sqrt{3}$y+6=0£®
£¨2£©Ö±Ïßm£º$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©»¯Îª£ºy=xtan¦Á£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=xtan¦Á}\\{x+\sqrt{3}y+6=0}\end{array}\right.$£¬½âµÃQ$£¨\frac{-6}{1+\sqrt{3}tan¦Á}£¬\frac{-6tan¦Á}{1+\sqrt{3}tan¦Á}£©$£¬
¡à|OQ|=$\sqrt{£¨\frac{-6}{1+\sqrt{3}tan¦Á}£©^{2}+£¨\frac{-6tan¦Á}{1+\sqrt{3}tan¦Á}£©^{2}}$=$\frac{6}{cos¦Á+\sqrt{3}sin¦Á}$£®
Ô²ÐÄC$£¨2£¬2\sqrt{3}£©$µ½Ö±ÏßmµÄ¾àÀëd=$\frac{|2tan¦Á-2\sqrt{3}|}{\sqrt{1+ta{n}^{2}¦Á}}$£¬|OC|=$\sqrt{{2}^{2}+£¨2\sqrt{3}£©^{2}}$=4£®
¡à|OP|=$\sqrt{|OC{|}^{2}-{d}^{2}}$=$\frac{2|\sqrt{3}tan¦Á-1|}{\sqrt{1+ta{n}^{2}¦Á}}$£®
¡à|OP|•|OQ|=$\frac{2|\sqrt{3}tan¦Á-1|}{\sqrt{1+ta{n}^{2}¦Á}}$•$\frac{6}{cos¦Á+\sqrt{3}sin¦Á}$=$\frac{12|\sqrt{3}tan¦Á-1|}{1+\sqrt{3}tan¦Á}$£®
µãÆÀ ±¾Ì⿼²éÁËÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢¹´¹É¶¨Àí£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $x=\frac{¦Ð}{3}$ | B£® | $x=\frac{5¦Ð}{12}$ | C£® | $x=\frac{¦Ð}{2}$ | D£® | $x=\frac{5¦Ð}{6}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | P1=P2 | B£® | P1£¼P2 | ||
| C£® | P1£¾P2 | D£® | P1£¬P2µÄ´óСÎÞ·¨È·¶¨ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com