分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出点B到A1C1的距离.
解答
解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
B(1,1,0),A1(1,0,1),C1(0,1,1),
$\overrightarrow{{A}_{1}B}$=(0,1,-1),$\overrightarrow{{A}_{1}{C}_{1}}$=(-1,1,0),
∴点B到A1C1的距离:
d=|$\overrightarrow{{A}_{1}B}$|•$\sqrt{1-[cos<\overrightarrow{{A}_{1}B},\overrightarrow{{A}_{1}{C}_{1}}>]^{2}}$=$\sqrt{2}$•$\sqrt{1-(\frac{1}{\sqrt{2}•\sqrt{2}})^{2}}$=$\frac{\sqrt{6}}{2}$.
故答案为:$\frac{\sqrt{6}}{2}$.
点评 本题考查点到直线的距离的求法,是基础题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com