精英家教网 > 高中数学 > 题目详情
3.在△ABC中,已知b=$\frac{2\sqrt{3}}{3}$asinB,且cosB=cosC.则△ABC的形状为等腰三角形或等边三角形.

分析 由条件利用正弦定理可得 3sinB=2$\sqrt{3}$sinAsinB,且B=C,化简可得sinA=$\frac{π}{3}$或$\frac{2π}{3}$,从而判断△ABC的形状.

解答 解:由题意,在△ABC中,2$\sqrt{3}$asinB=3b且cosB=cosC,
则有:3sinB=2$\sqrt{3}$sinAsinB,且B=C,B,C为锐角,
解得:sinA=$\frac{\sqrt{3}}{2}$,
∴A=$\frac{π}{3}$,或$\frac{2π}{3}$,
故:当A=$\frac{π}{3}$时,再由B=C可得△ABC是等边三角形.
当A=$\frac{2π}{3}$时,由B=C可得△ABC是等腰三角形.
故答案为:等腰三角形或等边三角形.

点评 本题主要考查正弦定理的应用,判断三角形的形状,根据三角函数的值求角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知线段PD垂直于正方形ABCD所在平面,D为垂足,|PD|=5cm,|AB|=8cm,连接PA、PB、PC.
(1)求证:平面PBC⊥平面PDC;
(2)求PB与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知x∈(0,π),且$cos(x-\frac{π}{4})=\frac{1}{3}$,则tanx=(  )
A.$-\frac{{9+4\sqrt{2}}}{7}或-\frac{{9-4\sqrt{2}}}{7}$B.$-\frac{{18+8\sqrt{2}}}{7}或-\frac{{18-8\sqrt{2}}}{7}$
C.$-\frac{{9+4\sqrt{2}}}{7}$D.$-\frac{{9-4\sqrt{2}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设l,m,n是三条不同的直线,α,β是两个不重合的平面,则下列命题正确的是(  )
A.α∥β,l?α,n?β⇒l∥nB.l⊥n,l⊥α⇒n∥αC.l⊥α,l∥β⇒α⊥βD.α⊥β,l?α⇒l⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.下列函数的单调区间:
(1)y=x-lnx
(2)y=ln(2x+3)+x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在棱长为1的正方体ABCD-A1B1C1D1中,点B到A1C1的距离是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线my2-x2=1(m∈R)与抛物线x2=8y有相同的焦点,则该双曲线的渐近线方程为(  )
A.y=±$\sqrt{3}$xB.y=±$\frac{\sqrt{3}}{3}$xC.y=±$\frac{1}{3}$xD.y=±3x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知p:m∈(-2,-1),q:m满足$\frac{{x}^{2}}{2+m}-\frac{{y}^{2}}{m+1}=1$表示椭圆,那么p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线1经过点(0,1)且与直线2x-y+3=0平行,则直线1的方程为(  )
A.x+2y-2=0B.x-2y+2=0C.2x-y+1=0D.2x-y-1=0

查看答案和解析>>

同步练习册答案