精英家教网 > 高中数学 > 题目详情
14.已知x∈(0,π),且$cos(x-\frac{π}{4})=\frac{1}{3}$,则tanx=(  )
A.$-\frac{{9+4\sqrt{2}}}{7}或-\frac{{9-4\sqrt{2}}}{7}$B.$-\frac{{18+8\sqrt{2}}}{7}或-\frac{{18-8\sqrt{2}}}{7}$
C.$-\frac{{9+4\sqrt{2}}}{7}$D.$-\frac{{9-4\sqrt{2}}}{7}$

分析 由和差角的公式化简可得cosx+sinx=$\frac{\sqrt{2}}{3}$,结合cos2x+sin2x=1和x的范围可得sinx和cosx的值,可得tanx.

解答 解:∵$cos(x-\frac{π}{4})=\frac{1}{3}$,
∴$\frac{\sqrt{2}}{2}$cosx+$\frac{\sqrt{2}}{2}$sinx=$\frac{1}{3}$,
∴cosx+sinx=$\frac{\sqrt{2}}{3}$,
又cos2x+sin2x=1,x∈(0,π),
∴sinx>0,
联立解得sinx=$\frac{\sqrt{2}+4}{6}$,cosx=$\frac{\sqrt{2}-4}{6}$,
∴tanx=$\frac{sinx}{cosx}$=$-\frac{{9+4\sqrt{2}}}{7}$.
故选:C.

点评 本题考查同角三角函数的基本关系,以及和差角的三角函数公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.下列四个命题申是真命题的是①③④(填所有真命题的序号)
①“p∧q为真”是“p∨q为真”的充分不必要条件;
②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;
③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;
④动圆P过定点A(-2,0),且在定圆B:(x-2)2+y2=36的内部与其相内切,则动圆圆心P的轨迹为一个椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知全集U=R,集合A={x|($\frac{1}{2}$)x≤1,B={x|x2-6x+8≤0},则A∩B为(  )
A.{x|x≤0}B.{x|2≤x≤4}C.{x|0<x≤2或x≥4}D.{x|0≤x<2或x>4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lg(x2-x-2)的定义域为集合A,函数$g(x)={x^{\frac{1}{2}}}$,x∈[0,9]的值域为集合B,
(1)求A∩B;
(2)若C={x|3x<2m-1},且(A∩B)⊆C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,∠C=$\frac{π}{6}$,AC=2$\sqrt{3}$,AB=2,则BC的长是(  )
A.2B.4C.2或4D.4或8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知点P是正方形ABCD内一点,且PA=1,PB=3,PD=$\sqrt{7}$,求正方形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A,B,C所对的边分别为a,b,c,且$\sqrt{3}$asinB-bcosA=b.
(1)求A;
(2)若b+c=2,当a取最小值时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,已知b=$\frac{2\sqrt{3}}{3}$asinB,且cosB=cosC.则△ABC的形状为等腰三角形或等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.与如图所示的图象相符的函数是(  )
A.y=sinx-|sinx|B.y=|sinx|+sinxC.y=|sinx|D.y=|sinx|-sinx

查看答案和解析>>

同步练习册答案