精英家教网 > 高中数学 > 题目详情
20.若a,b,c∈R,且a>b,则下列不等式正确的个数是(  )
①$\frac{1}{a}$<$\frac{1}{b}$     ②a2>b2      ③ac4>bc4    ④$\frac{a}{{c}^{2}+1}$>$\frac{b}{{c}^{2}+1}$.
A.1B.2C.3D.4

分析 利用不等式的性质,对4个结论分别进行判断,即可得出结论.

解答 解:①a=1,b=-1,$\frac{1}{a}$<$\frac{1}{b}$ 不成立;
②a=1,b=-1,a2>b2 不成立;
③c=0,ac4>bc4 不成立;
④由于c2+1>0,a>b,所以$\frac{a}{{c}^{2}+1}$>$\frac{b}{{c}^{2}+1}$成立.
故选:A.

点评 本题考查不等式的性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.命题P的否定是:“对所有正数x,$\sqrt{x}$>x+1”,则命题P是存在正数x,$\sqrt{x}$≤x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.指数函数y=ax和对数函数y=logax(其中a>0,a≠1)的图象分别为C1和C2,点M在曲线C1上,线段OM(O为坐标原点)交曲线C1于另一点N,若曲线C2上存在一点P,满足点P的横坐标与点M的纵坐标相等,点P的纵坐标是点N横坐标的两倍,则点P的坐标为(4,loga4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ,μ∈R),λ•μ=$\frac{9}{64}$,则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{2}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\frac{{{x^2}+1}}{x}$,g(x)=$\frac{x}{e^x}$,对任意x1,x2∈(0,+∞),不等式$\frac{{g({x_1})}}{k}$≤$\frac{{f({x_2})}}{k+1}$恒成立,则正数k的取值范围是$k≥\frac{1}{2e-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在${({\frac{1}{x}+1})^3}{({x+2})^3}$的展开式中,常数项为(  )
A.36B.48C.63D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法正确的是(  )
A.底面是正多边形,侧面都是正三角形的棱锥是正棱锥
B.各个侧面都是正方形的棱柱一定是正棱柱
C.对角面是全等的矩形的直棱柱是长方体
D.两底面为相似多边形,且其余各面均为梯形的多面体必为棱台

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{3}$,离心率为$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆E上在第一象限内的点,如图,点P关于原点O的对称点为A,关于x轴的对称点为Q,线段PQ与x轴交于点C,点D为线段CQ的中点,直线AD与椭圆E的另一个交点为B,证明:点P在以AB为直径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.要使$\sqrt{3}sinα+cosα=\frac{4m-6}{4-m}$有意义,则应有(  )
A.$m≤\frac{7}{3}$B.m≥-1C.$m≤-1或m≥\frac{7}{3}$D.$-1≤m≤\frac{7}{3}$

查看答案和解析>>

同步练习册答案