| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 首先,判断三棱锥 A-BA1D为正三棱锥,然后,得到△BA1D为正三角形,得到H为A在平面A1BD内的射影,然后,根据平面A1BD⊥平面BC1D,得到②正确,最后,结合线面角和对称性求解.
解答 解:∵AB=AA1=AD,BA1=BD=A1D,
∴三棱锥 A-BA1D为正三棱锥,
∴点H是△A1BD的垂心,故①为真命题;
∵平面A1BD与平面B1CD1平行,
∵AH⊥平面A1BD,
∵平面A1BD⊥平面BC1D,
∴AH垂直平面CB1D1,故②为真命题;
根据正方体的对称性得到AH的延长线经过C1,故③为真命题
∵AA1∥BB1,∴∠A1AH就是直线AH和BB1所成角,
在直角三角形AHA1中,
∵AA1=1,A1H=$\frac{2}{3}×\frac{\sqrt{3}}{2}×\sqrt{2}$=$\frac{\sqrt{6}}{3}$,
∴sin∠A1AH=$\frac{\sqrt{6}}{3}$,故④为假命题;
故选:C.
点评 本题以命题的真假判断与应用为载体,考查了正方体的几何特征,线面垂直,直线与平面的夹角等知识点,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | [-1,2] | B. | [-2,3] | C. | [-2,1] | D. | [1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{2}$ | B. | $\sqrt{2}$ | C. | $2\sqrt{6}$ | D. | $\frac{{\sqrt{3}}}{2}+2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,8,0) | B. | (0,2,0) | C. | (0,8,0)或(0,2,0) | D. | (0,-8,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3π | B. | $\frac{3π}{2}$ | C. | 6π | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 月份 | 2 | 3 | 4 | 5 |
| 产奶量y(吨) | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com