【题目】为了了解一个智力游戏是否与性别有关,从某地区抽取男女游戏玩家各200请客,其中游戏水平分为高级和非高级两种.
(1)根据题意完善下列列联表,并根据列联表判断是否有99%以上的把握认为智力游戏水平高低与性别有关?
性别 | 高级 | 非高级 | 合计 |
女 | 40 | ||
男 | 140 | ||
合计 |
(2)按照性别用分层抽样的方法从这些人中抽取10人,从这10人中抽取3人作为游戏参赛选手;
若甲入选了10人名单,求甲成为参赛选手的概率;
设抽取的3名选手中女生的人数为,求的分布列和期望.
附表:,其中.
0.010 | 0.05 | 0.001 | |
6.635 | 7.879 | 10.828 |
【答案】(1)列联表见解析,没有99%以上的把握认为智力游戏水平高低与性别有关,
(2),分布列见解析,
【解析】
(1)根据题意完善列联表,再计算,对照临界值得出结论即可.
(2)从人中抽取人共有个基本事件,甲为参赛选手共有个基本事件,再利代入古典概型公式即可.首先用分层抽样得到抽取的男、女生人数,得到女生的人数的所有取值为0,1,2,3,计算出相应的概率,再列出分布列,计算数学期望即可.
(1)
性别 | 高级 | 非高级 | 合计 |
女 | 40 | 160 | 200 |
男 | 60 | 140 | 200 |
合计 | 100 | 300 | 400 |
,所以没有99%以上的把握认为智力游戏水平高低与性别有关
(2)甲入选3人名单的概率为;
根据分层抽样的特征10人中男女各5人,女生的人数的所有取值为0,1,2,3;
,,
,;
所以的分布列为
0 | 1 | 2 | 3 | |
期望.
科目:高中数学 来源: 题型:
【题目】已知圆,点,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线.
(1)求曲线的标准方程;
(2)已知过坐标原点的直线交曲线于、两点,若在曲线上存在点,使得,求的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若曲线在处的切线与轴平行,求;
(2)已知在上的最大值不小于,求的取值范围;
(3)写出所有可能的零点个数及相应的的取值范围.(请直接写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自2017年起,全国各省市陆续实施了新高考,许多省市采用了“”的选科模式,即:考生除必考的语数外三科外,再从物理化学生物历史地理政治六个学科中,任意选取三科参加高考,为了调查新高考中考生的选科情况,某地调查小组对某中学进行了一次调查,研究考生选择化学与选择物理是否有关.已知在调查数据中,选物理的考生与不选物理的考生人数相同,其中选物理且选化学的人数占选物理人数的,在不选物理的考生中,选化学与不选化学的人数比为.
(1)若在此次调查中,选物理未选化学的考生有100人,将选物理且选化学的人数占选化学总人数的比作为概率,从该中学选化学的考生中随机抽取4人,记这4人中选物理且选择化学的考生人数为,求的分布列(用排列数组合数表示即可)和数学期望.
(2)若研究得到在犯错误概率不超过0.01的前提下,认为选化学与选物理有关,则选物理且选化学的人数至少有多少?(单位:百人,精确到0.01)
附:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术商功》中阐述:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”若称为“阳马”的某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,对该几何体有如下描述:
①四个侧面都是直角三角形;
②最长的侧棱长为;
③四个侧面中有三个侧面是全等的直角三角形;
④外接球的表面积为24π.
其中正确的描述为____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(1+x)t﹣1的定义域为(﹣1,+∞),其中实数t满足t≠0且t≠1.直线l:y=g(x)是f(x)的图象在x=0处的切线.
(1)求l的方程:y=g(x);
(2)若f(x)≥g(x)恒成立,试确定t的取值范围;
(3)若a1,a2∈(0,1),求证: .注:当α为实数时,有求导公式(xα)′=αxα﹣1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.
(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:
A市居民 | B市居民 | |
喜欢杨树 | 300 | 200 |
喜欢木棉树 | 250 | 250 |
是否有的把握认为喜欢树木的种类与居民所在的城市具有相关性;
(2)若从所有的路口中随机抽取4个路口,恰有个路口种植杨树,求的分布列以及数学期望;
(3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为,求证:.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com