精英家教网 > 高中数学 > 题目详情
13.在(1-2x)7的展开式中,求:
(1)二项式系数的和;
(2)各项系数的和;
(3)奇数项的二项式系数和与偶数项的二项式系数和;
(4)奇数项系数和与偶数项系数和.

分析 直接利用二项式定理的系数的性质求解(1)、(3),利用赋值法求解(2),(4).

解答 解:在(1-2x)7的展开式中,
(1)二项式系数的和为:27
(2)x=1时,各项系数的和:(1-2)7=-1;
(3)奇数项的二项式系数和与偶数项的二项式系数和相等都是:26=64;
(4)x=1时,奇数项系数和与偶数项系数和:-1.

点评 本题考查二项式定理的应用,二项式定理系数的性质,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知等差数列{an}中,a4+a8+a10+a14=20,则前17项的和为85.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.极坐标系下,P为曲线$\sqrt{2}$rsin(θ-$\frac{π}{4}$)=a(a>0)上的动点,Q为曲线r=2sinθ上的动点,若线段PQ长度的最小值为$\sqrt{2}$-1,则a的值为$\frac{5-\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦点分别为${F_1}(-\sqrt{3},0)$、${F_2}(\sqrt{3},0)$,点P在椭圆C上,满足|PF1|=7|PF2|,tan∠F1PF2=4$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点A(1,0),试探究是否存在直线l:y=kx+m与椭圆C交于D、E两点,且使得|AD|=|AE|?若存在,求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和是Sn,且2Sn=3an-2n
(1)证明:{an+1}为等比数列;
(2)证明:$\frac{1}{{a}_{2}-{a}_{1}}$+$\frac{1}{{a}_{3}-{a}_{2}}$+…+$\frac{1}{{a}_{n+1}-{a}_{n}}$<$\frac{1}{4}$;
(3)Tn为数列{bn}的前n项和,设bn=log3(an+1),是否存在正整数m,k,使b${\;}_{k+1}^{2}$=2Tm+19成立,若存在,求出m,k;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.等差数列前100项和为10,前10项和为100,求前110项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,某广场为一半径为80米的半圆形区域,现准备在其一扇形区域OAB内建两个圆形花坛,该扇形的圆心角为变量2θ(0<2θ<π),其中半径较大的花坛⊙P内切于该扇形,半径较小的花坛⊙Q与⊙P外切,且与OA、OB相切.
(1)求半径较大的花坛⊙P的半径(用θ表示);
(2)求半径较小的花坛⊙Q的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若圆C:(x-a)2+[y-(2a-4)]2=1与圆D:x2+(y+1)2=4有公共点,则a的取值范围是(2-$\frac{2\sqrt{5}}{5}$,2+$\frac{2\sqrt{5}}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在(1-x210的展开式中,如果第r+1项和第2r-7项的二项式系数相等.
(1)求r的值;
(2)求(x-$\frac{1}{x}$)r展开式中的常数项.

查看答案和解析>>

同步练习册答案