精英家教网 > 高中数学 > 题目详情
10.某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试跳远的成绩用茎叶图表示如下(单位:cm):
男生成绩在175cm以上(包括175cm)定义为“合格”,成绩在175cm以下(不包括175cm)定义为“不合格”.
女生成绩在165cm以上(包括165cm)定义为“合格”,成绩在165cm以下(不包括165cm)定义为“不合格”.
(Ⅰ)求男生跳远成绩的中位数;
(Ⅱ)如果用分层抽样的方法从男、女生中共抽取5人,求抽取的5人中女生人数;
(Ⅲ)若从男、女生测试成绩“合格”的学生中选取2名参加复试,用X表示其中男生的人数,写出X的分布列,并求X的数学期望.

分析 (I)利用茎叶图能求出男生跳远成绩的中位数.
(Ⅱ)用分层抽样的方法,求出每个运动员被抽中的概率,根据茎叶图,女生有18人,由此能求出抽取的女生的人数.
(Ⅲ)依题意,男生、女生测试成绩合格的分别有8人、10人,X的取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和EX.

解答 解:(I)利用茎叶图,得男生跳远成绩的中位数$\frac{176+178}{2}=177$(cm).…(2分)
(Ⅱ)用分层抽样的方法,每个运动员被抽中的概率是$\frac{5}{30}=\frac{1}{6}$,…(4分)
根据茎叶图,女生有18人,
∴抽取的女生有$18×\frac{1}{6}=3$(人);…(6分)
(Ⅲ)依题意,男生、女生测试成绩合格的分别有8人、10人…(7分)
X的取值为0,1,2,
则$P(X=0)=\frac{{C_{10}^2}}{{C_{18}^2}}=\frac{5}{17}$,
$P(X=1)=\frac{{C_8^1C_{10}^1}}{{C_{18}^2}}=\frac{80}{153}$,
$P(X=2)=\frac{C_8^2}{{C_{18}^2}}=\frac{28}{153}$,…(10分)
X的分布列如下:

X012
P$\frac{5}{17}$$\frac{80}{153}$$\frac{28}{153}$
…(11分)
∴EX=$0×\frac{5}{17}+1×\frac{80}{153}+2×\frac{28}{153}$=$\frac{8}{9}$.…(12分)

点评 本题考查茎叶图、分层抽样的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若f(x)=3x3+2x2+x+4,则f(9)=2362.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知四边形ABEF为矩形,四边形ABCD为直角梯形,平面ABEF⊥平面ABCD,∠BAD=90°,AB∥CD,AF=BC=2,CD=3,AB=4.
(1)求证:AC⊥平面BCE;
(2)求三棱锥E-BCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某地区某商品的零售价格每周不断发生变化,但呈现如下规律:本周价格a元时,下周价格以概率p升1元或以概率1-p降1元,若第一周的价格为20元.
(I)若p=$\frac{1}{2}$,求第五周价格仍为20元的概率;
(Ⅱ)若p=$\frac{2}{3}$,第五周的价格为X元,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项的和为Sn,且a1=1,a2=4,Sn+1=5Sn-4Sn-1(n≥2),等差数列{bn}满足b6=6,b9=12,
(1)分别求出数列{an},{bn}的通项公式;
(2)若对于任意的n∈N*,(Sn+$\frac{1}{3}$)•k≥bn恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a>b>0,试指出$\frac{a+b}{2}$-$\sqrt{ab}$,$\frac{(a-b)^{2}}{8a}$,$\frac{(a-b)^{2}}{8b}$的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为降低雾霾等恶劣气候对居民的影响,某公司研发了一种新型防雾霾产品.每一台新产品在进入市场前都必须进行两种不同的检测,只有两种检测都合格才能进行销售,否则不能销售.已知该新型防雾霾产品第一种检测不合格的概率为$\frac{1}{6}$,第二种检测不合格的概率为$\frac{1}{10}$,两种检测是否合格相互独立.
(Ⅰ)求每台新型防雾霾产品不能销售的概率;
(Ⅱ)如果产品可以销售,则每台产品可获利40元;如果产品不能销售,则每台产品亏损80元(即获利-80元).现有该新型防雾霾产品3台,随机变量X表示这3台产品的获利,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.体育课上,李老师对初三(1)班50名学生进行跳绳测试.现测得他们的成绩(单位:个)全部介于20到70之间,将这些成绩数据进行分组(第一组:(20,30],第二组:(30,40],…,第五组:(60,70]),并绘制成如图所示的频率分布直方图.
(Ⅰ)求成绩在第四组的人数和这50名同学跳绳成绩的中位数;
(Ⅱ)从成绩在第一组和第五组的同学中随机抽出3名同学进行搭档训练,设取自第一组的人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知A类产品共两件A1,A2,B类产品共三件B1,B2,B3,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件A类产品或者检测出3件B类产品时,检测结束.
(Ⅰ)求第一次检测出B类产品,第二次检测出A类产品的概率;
(Ⅱ)已知每检测一件产品需要费用50元,设X表示直到检测出2件A类产品或者检测出3件B类产品时所需要的检测费用(单位:元),求X的分布列和均值.

查看答案和解析>>

同步练习册答案