精英家教网 > 高中数学 > 题目详情
19.体育课上,李老师对初三(1)班50名学生进行跳绳测试.现测得他们的成绩(单位:个)全部介于20到70之间,将这些成绩数据进行分组(第一组:(20,30],第二组:(30,40],…,第五组:(60,70]),并绘制成如图所示的频率分布直方图.
(Ⅰ)求成绩在第四组的人数和这50名同学跳绳成绩的中位数;
(Ⅱ)从成绩在第一组和第五组的同学中随机抽出3名同学进行搭档训练,设取自第一组的人数为ξ,求ξ的分布列及数学期望.

分析 (I)由频率分布直方图先求出第四组的频率,由此能求出第四组的人数;利用频率分布直方图的性质能求出中位数.
(II)先求出第一组有2人,第五组有4人,成绩在第一组和第五组的同学中随机抽出3名同学进行搭档训练,设取自第一组的人数为ξ,则ξ=0,1,2,分别求出相应的概率,由此能求出ξ的分布列及E(ξ).

解答 解:(I)由频率分布直方图得第四组的频率为:
1-(0.004+0.016+0.04+0.008)×10=0.32,
∴第四组的人数为0.32×50=16人,
∵前2组的频率为(0.004+0.016)×10=0.2,
第三组的频率为0.04×10=0.4,
设中位数为x,则x=40+$\frac{0.5-0.2}{0.4}×10$=47.5,
∴中位数为47.5.
(II)据题意,第一组有0.004×10×50=2人,第五组有0.008×10×50=4人,
成绩在第一组和第五组的同学中随机抽出3名同学进行搭档训练,设取自第一组的人数为ξ,
则ξ=0,1,2,
P(ξ=0)=$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
P(ξ=1)=$\frac{{C}_{2}^{1}{C}_{4}^{2}}{{C}_{6}^{3}}$=$\frac{3}{5}$,
P(ξ=2)=$\frac{{C}_{2}^{2}{C}_{4}^{1}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
∴ξ的分布列为:

ξ012
P$\frac{1}{5}$$\frac{3}{5}$$\frac{1}{5}$
∴E(ξ)=$0×\frac{1}{5}+1×\frac{3}{5}+2×\frac{1}{5}$=1.

点评 本题考查频率分布直方图的应用,考查离散型随机变量的分布列及数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知等比数列{an},满足a1=1,a2016=2,函数y=f(x)的导函数为y=f′(x),且f(x)=x(x-a1)(x-a2)…(x-a2016),那么f′(0)=21008

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试跳远的成绩用茎叶图表示如下(单位:cm):
男生成绩在175cm以上(包括175cm)定义为“合格”,成绩在175cm以下(不包括175cm)定义为“不合格”.
女生成绩在165cm以上(包括165cm)定义为“合格”,成绩在165cm以下(不包括165cm)定义为“不合格”.
(Ⅰ)求男生跳远成绩的中位数;
(Ⅱ)如果用分层抽样的方法从男、女生中共抽取5人,求抽取的5人中女生人数;
(Ⅲ)若从男、女生测试成绩“合格”的学生中选取2名参加复试,用X表示其中男生的人数,写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}中a1,a2的分别是直线2x+y-2=0的横、纵截距,且$\frac{{{a_{n+1}}-{a_{n-1}}}}{{{a_n}+{a_{n+1}}}}$=2(n≥2,n∈N*),则数列{an}的通项公式为an=(3n-4)(-1)n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在(0,+∞)上函数f(x)满足对任意x,y∈(0,+∞),都有xyf(xy)=xf(x)+yf(y),记数列an=f(2n),有以下命题:
①f(1)=0;
②a1=a2
③令函数g(x)=xf(x),则$g(x)+g(\frac{1}{x})=0$;
④令数列bn=2n•an,则数列{bn}为等比数列.
其中真命题的序号为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若定义在R上的不恒为零的函数f(x)满足:?x,y∈R都有f2(x)-f2(y)=f(x+y)f(x-y),则称函数f(x)为“平方差函数”,下列命题:
(1)若f(x)=$\left\{\begin{array}{l}{1,x≥0}\\{0,x<0}\end{array}\right.$,则f(x)为“平方差函数”;
(2)若f(x)=kx(k>0),则f(x)为“平方差函数”;
(3)若f(x)为“平方差函数”,则f(x)为奇函数;
(4)若f(x)为“平方差函数”,则f(x)为增函数.
其中正确命题的序号是(2)(3)(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在等比数列{an}中,若a1,a2,…,a8都是正数,且公比q≠1,则(  )
A.a1+a8>a4+a5B.a1+a8<a4+a5
C.a1+a8=a4+a5D.a1+a8与a4+a5的大小关系不定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若复数z满足z(1+i)=2-2i(i为虚数单位),则|z|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取5次,记录如下:
8889929091
8488968993
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?请说明理由.(用样本数据特征来说明.)

查看答案和解析>>

同步练习册答案