分析 (I)由频率分布直方图先求出第四组的频率,由此能求出第四组的人数;利用频率分布直方图的性质能求出中位数.
(II)先求出第一组有2人,第五组有4人,成绩在第一组和第五组的同学中随机抽出3名同学进行搭档训练,设取自第一组的人数为ξ,则ξ=0,1,2,分别求出相应的概率,由此能求出ξ的分布列及E(ξ).
解答 解:(I)由频率分布直方图得第四组的频率为:
1-(0.004+0.016+0.04+0.008)×10=0.32,
∴第四组的人数为0.32×50=16人,
∵前2组的频率为(0.004+0.016)×10=0.2,
第三组的频率为0.04×10=0.4,
设中位数为x,则x=40+$\frac{0.5-0.2}{0.4}×10$=47.5,
∴中位数为47.5.
(II)据题意,第一组有0.004×10×50=2人,第五组有0.008×10×50=4人,
成绩在第一组和第五组的同学中随机抽出3名同学进行搭档训练,设取自第一组的人数为ξ,
则ξ=0,1,2,
P(ξ=0)=$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
P(ξ=1)=$\frac{{C}_{2}^{1}{C}_{4}^{2}}{{C}_{6}^{3}}$=$\frac{3}{5}$,
P(ξ=2)=$\frac{{C}_{2}^{2}{C}_{4}^{1}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
∴ξ的分布列为:
| ξ | 0 | 1 | 2 |
| P | $\frac{1}{5}$ | $\frac{3}{5}$ | $\frac{1}{5}$ |
点评 本题考查频率分布直方图的应用,考查离散型随机变量的分布列及数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a1+a8>a4+a5 | B. | a1+a8<a4+a5 | ||
| C. | a1+a8=a4+a5 | D. | a1+a8与a4+a5的大小关系不定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 甲 | 88 | 89 | 92 | 90 | 91 |
| 乙 | 84 | 88 | 96 | 89 | 93 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com