分析 ①令x=y=1代入所给的式子求出f(1)的值,并判断①真假;
②令x=y=2代入式子化简,再结合数列的通项公式进行判断②的真假;
③令y=$\frac{1}{x}$代入式子化简后,再由函数g(x)的解析式转化,判断③真假;
④利用{bn}的通项公式分别求出b1、b2、b3,令x=2,y=4代入式子化简后,再由等比数列的定义判断④真假.
解答 解:①令x=y=1,代入xyf(xy)=xf(x)+yf(y)得,f(1)=0,①正确;
②令x=y=2,得4f(4)=2f(2)+2f(2),即f(4)=f(2),
又由an=f(2n)得,a1=f(2),a2=f(4),则a1=a2,②正确;
③令y=$\frac{1}{x}$,得f(1)=xf(x)+$\frac{1}{x}f(\frac{1}{x})$
由g(x)=xf(x),得g(x)+g($\frac{1}{x}$)=f(1)=0,③正确;
④由bn=2n•an,得b1=2a1,b2=4a2,b3=8a3,而a1=a2,a3=f(8),
令x=2,y=4,得8f(8)=2f(2)+4f(4),
化简得,f(8)=$\frac{3}{4}$f(2),即a3=$\frac{3}{4}$a2=$\frac{3}{4}$a1,
显然b1、b2、b3不是等比数列中的项,所以数列{bn}不是等比数列,④错.
故其中正确命题的为:①②③.
故答案为:①②③
点评 本题考查了抽象函数,及数列通项公式和等比数列定义的应用,此题的关键是根据条件正确给x和y值,利用恒等式进行求解,考查了解决抽象函数问题常用的方法:赋值法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 17 | B. | 23 | C. | 34 | D. | 46 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com