精英家教网 > 高中数学 > 题目详情
9.已知△ABC的两个顶点A,B的坐标分别是(0,-$\sqrt{3}$),(0,$\sqrt{3}$),且AC,BC所在直线的斜率之积等于$-\frac{3}{4}$.
(1)求顶点C的轨迹M的方程;
(2)当点P(1,t)为曲线M上点,且点P为第一象限点,过点P作两条直线与曲线M交于E,F两点,直线PE,PF斜率互为相反数,则直线EF斜率是否为定值,若是,求出定值,若不是,请说明理由.

分析 (1)C点坐标为(x,y),运用直线的斜率公式,化简整理,可得所求轨迹方程,注意去除y轴上的点;
(2)设E(x1,y1),F(x2,y2),令直线PE:y-$\frac{3}{2}$=k(x-1),联立椭圆方程,运用韦达定理求得E的坐标,同理将k换为-k,可得F的坐标,再由直线的斜率公式,化简整理,即可得到定值.

解答 解:(1)令C点坐标为(x,y),
则直线AC的斜率k1=$\frac{y+\sqrt{3}}{x}$,直线BC的斜率k2=$\frac{y-\sqrt{3}}{x}$,
因为两直线的斜率之积为$-\frac{3}{4}$,
所以有$\frac{{y-\sqrt{3}}}{x}•\frac{{y+\sqrt{3}}}{x}=-\frac{3}{4}$,
化简得到$\frac{x^2}{4}+\frac{y^2}{3}=1(x≠0)$,
所以轨迹M表示焦点在x轴上的椭圆,且除去(0,-$\sqrt{3}$),(0,$\sqrt{3}$)两点;
(2)由题意曲线M为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1(x≠0),点P(1,$\frac{3}{2}$),
设E(x1,y1),F(x2,y2),令直线PE:y-$\frac{3}{2}$=k(x-1),联立椭圆方程,
得(3+4k2)x2+8k($\frac{3}{2}$-k)x+4($\frac{3}{2}$-k)2-12=0,
则x1xP=$\frac{4{k}^{2}-12k-3}{3+4{k}^{2}}$,故x1=$\frac{4{k}^{2}-12k-3}{3+4{k}^{2}}$,
同理x2=$\frac{4{k}^{2}+12k-3}{3+4{k}^{2}}$,
kEF=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{-k({x}_{2}-1)+\frac{3}{2}-[k({x}_{1}-1)+\frac{3}{2}]}{{x}_{2}-{x}_{1}}$
=$\frac{-k({x}_{2}+{x}_{1})+2k}{{x}_{2}-{x}_{1}}$=$\frac{-k•(8{k}^{2}-6)+2k(3+4{k}^{2})}{24k}$=$\frac{1}{2}$,
故直线EF斜率为为定值$\frac{1}{2}$.

点评 本题考查椭圆方程的求法,注意运用直线的斜率公式,考查直线的斜率是否为定值的求法,注意运用联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知i为虚数单位,若z(3+4i)=$\frac{5+12i}{i}$,则|z|=(  )
A.$\frac{12}{5}$B.$\frac{13}{5}$C.$\frac{5}{12}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数g(x)=x2-2mx+1(m>0)在区间[0,3]上有最大值4.
(1)求函数g(x)的解析式;
(2)设f(x)=$\frac{g(x)-2x}{x}$.若f(2x)-k•2x≤0在x∈[-3,3]时恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,不经过原点O的直线l:y=kx+m(k>0)与椭圆E相交于不同的两点A、B,直线OA,AB,OB的斜率依次构成等比数列.
(Ⅰ)求a,b,k的关系式;
(Ⅱ)若离心率$e=\frac{1}{2}$且$|{AB}|=\sqrt{7}|{m+\frac{1}{m}}|$,当m为何值时,椭圆的焦距取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2$\sqrt{2}$,且斜率为$\sqrt{3}$的直线l过椭圆C的焦点及点(0,-2$\sqrt{3}$).
(1)求椭圆C的方程;
(2)已知一直线m过椭圆C的左焦点F,交椭圆于点P、Q,若直线m与两坐标轴都不垂直,点M在x轴上,且使MF为∠PMQ的一条角平分线,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在(0,+∞)上函数f(x)满足对任意x,y∈(0,+∞),都有xyf(xy)=xf(x)+yf(y),记数列an=f(2n),有以下命题:
①f(1)=0;
②a1=a2
③令函数g(x)=xf(x),则$g(x)+g(\frac{1}{x})=0$;
④令数列bn=2n•an,则数列{bn}为等比数列.
其中真命题的序号为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.袋中装有5只大小相同的球,编号分别为1,2,3,4,5,现从该袋中随机地取出3只,被取出的球
中最大的号码为ξ,则Eξ=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,点A,B分别为椭圆的右顶点和上顶点,且|AB|=$\sqrt{7}$.
(1)求椭圆C的标准方程;
(2)椭圆C的右焦点为F,过F点的两条互相垂直的直线l1、l2,直线l1与椭圆C交于P,Q两点,直线l2与直线x=4交于T点,求证:线段PQ的中点在直线OT上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设区域Ω={(x,y)|0≤x≤1,0≤y≤1},区域A={(x,y)|y≤$\sqrt{x}$,(x,y)∈Ω},在区域Ω中随机取一个点,则该点在A中的概率$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案