精英家教网 > 高中数学 > 题目详情
20.已知二次函数g(x)=x2-2mx+1(m>0)在区间[0,3]上有最大值4.
(1)求函数g(x)的解析式;
(2)设f(x)=$\frac{g(x)-2x}{x}$.若f(2x)-k•2x≤0在x∈[-3,3]时恒成立,求k的取值范围.

分析 (1)利用函数是二次函数,求出对称轴方程,利用二次函数的性质求解函数的最大值,推出m的值即可.
(2)通过不等式恒成立,转化为求解函数的最值问题,构造函数是二次函数,利用二次函数的对称性求解函数在闭区间上的最值即可.

解答 解:(1)g(x)=(x-m)2+1-m2
函数的对称轴为:x=m,
①m≤$\frac{3}{2}{,g(x)}_{max}$=g(3)=10-6m=4,解得m=1
②m>$\frac{3}{2}{,g(x)}_{max}$=g(0)=1(不符题意)
∴g(x)=x2-2x+1.
(2)∵f(x)=$\frac{g(x)-2x}{x}$,∴f(x)=$x+\frac{1}{x}$-4.
∵f(2x)-k•2x≤0在x∈[-3,3]时恒成立,即${2}^{x}+\frac{1}{{2}^{x}}-4-k•{2}^{x}≤0$在x∈[-3,3]时恒成立,
∴k≥$(\frac{1}{{2}^{x}})^{2}$-4($\frac{1}{{2}^{x}}$)+1在x∈[-3,3]时恒成立,只需k≥[$(\frac{1}{{2}^{x}})^{2}$-4($\frac{1}{{2}^{x}}$)+1]max
令t=$\frac{1}{{2}^{x}}$,由x∈[-3,3]得t∈[$\frac{1}{8}$,8].
设h(t)=t2-4t+1=(t-2)2-3,
∴函数h(t)的图象的对称轴方程为t=2.
当t=8时,取得最大值33.
∴k≥h(x)max,∴k的取值范围为[33,+∞).

点评 本题考查函数的最值的求法,二次函数的性质,函数恒成立以及构造法转化思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.命题“?x∈(0,+∞),x2-x≤0”的否定是(  )
A.?x∈(-∞,0],x2-x>0B.?x∈(0,+∞),x2-x>0C.?x∈(0,+∞),x2-x>0D.?x∈(-∞,0],x2-x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}的前n项和为Sn,a1a2a3=8,a1+a2+a3=7且a1<a2,若$\frac{{S}_{n}}{{a}_{n}}$∈[a,b]对任意的整数n都成立,则b-a的最小值为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若关于a,b的代数式f(a,b)满足:
(1)f(a,a)=a;
(2)f(ka,kb)=k•f(a,b);
(3)f(a1+a2,b1+b2)=f(a1,b1)+f(a2,b2);
(4)$f(a,b)=f(b,\frac{a+b}{2})$,
则f(1,0)+f(2,0)=0;f(x,y)=y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若定义在区间[-2016,2016]上的函数f(x)满足:对于任意的x1,x2∈[-2016,2016],都有f(x1+x2)=f(x1)+f(x2)-2016,且x>0时,有f(x)<2016,f(x)的最大值、最小值分别为M,N,则M+N的值为(  )
A.2015B.2016C.4030D.4032

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项的和为Sn,且a1=1,a2=4,Sn+1=5Sn-4Sn-1(n≥2),等差数列{bn}满足b6=6,b9=12,
(1)分别求出数列{an},{bn}的通项公式;
(2)若对于任意的n∈N*,(Sn+$\frac{1}{3}$)•k≥bn恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a1,a2,…,a2016∈[-2,2],且a1+a2+…+a2016=0,则f=a${\;}_{1}^{3}$+a${\;}_{2}^{3}$+…+a${\;}_{2016}^{3}$的最大值是(  )
A.2016B.3024C.4032D.5040

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC的两个顶点A,B的坐标分别是(0,-$\sqrt{3}$),(0,$\sqrt{3}$),且AC,BC所在直线的斜率之积等于$-\frac{3}{4}$.
(1)求顶点C的轨迹M的方程;
(2)当点P(1,t)为曲线M上点,且点P为第一象限点,过点P作两条直线与曲线M交于E,F两点,直线PE,PF斜率互为相反数,则直线EF斜率是否为定值,若是,求出定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=2|x+a|-|x+b|
(Ⅰ)当a=0,b=-$\frac{1}{2}$时,求使f(x)≥$\sqrt{2}$的x取值范围;
(Ⅱ)若f(x)≥$\frac{1}{16}$恒成立,求a-b的取值范围.

查看答案和解析>>

同步练习册答案