18£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬µãA£¬B·Ö±ðΪÍÖÔ²µÄÓÒ¶¥µãºÍÉ϶¥µã£¬ÇÒ|AB|=$\sqrt{7}$£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÍÖÔ²CµÄÓÒ½¹µãΪF£¬¹ýFµãµÄÁ½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïßl1¡¢l2£¬Ö±Ïßl1ÓëÍÖÔ²C½»ÓÚP£¬QÁ½µã£¬Ö±Ïßl2ÓëÖ±Ïßx=4½»ÓÚTµã£¬ÇóÖ¤£ºÏß¶ÎPQµÄÖеãÔÚÖ±ÏßOTÉÏ£®

·ÖÎö £¨1£©¸ù¾ÝÌõ¼þÔËÓÃÀëÐÄÂʹ«Ê½ºÍÁ½µã¾àÀ빫ʽ£¬Çó³öa£¬b£¬¼´¿ÉÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÉèPQµÄ·½³ÌΪ£ºx=my+1´úÈëÍÖÔ²·½³Ì£¬ÀûÓøùÓëϵÊýÖ®¼äµÄ¹ØÏµ£¬ÇóµÃPQµÄÖеãGµÄ×ø±ê£¬Çó³öOGºÍOTµÄбÂÊ£¬¼´¿ÉµÃÖ¤£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃe=$\frac{c}{a}$=$\frac{1}{2}$£¬
ÓÖa2-b2=c2£¬
$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{7}$£¬
½âµÃa=2£¬c=1£¬b=$\sqrt{3}$£¬
¹ÊËùÇóÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©Ö¤Ã÷£ºÉèÖ±ÏßPQµÄ·½³ÌΪ£ºx=my+1£¬
´úÈëÍÖÔ²·½³Ì3x2+4y2=12£¬
µÃ£¨3m2+4£©y2+6my-9=0£¬
ÔòÅбðʽ¡÷=36m2+4¡Á9£¨3m2+4£©£¾0£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬PQµÄÖеãG£¨x0£¬y0£©£¬
Ôòy1+y2=-$\frac{6m}{3{m}^{2}+4}$£¬y1y2=-$\frac{9}{3{m}^{2}+4}$£¬
Ôòy0=$\frac{1}{2}$£¨y1+y2£©=-$\frac{3m}{3{m}^{2}+4}$£¬x0=my0+1=$\frac{4}{3{m}^{2}+4}$£¬
¼´G£¨$\frac{4}{3{m}^{2}+4}$£¬-$\frac{3m}{3{m}^{2}+4}$£©£¬
kOG=-$\frac{3m}{3{m}^{2}+4}$•$\frac{3{m}^{2}+4}{4}$=-$\frac{3m}{4}$£¬
ÉèÖ±ÏßFTµÄ·½³ÌΪ£ºy=-m£¨x-1£©£¬µÃTµã×ø±êΪ£¨4£¬-3m£©£¬
ÓÉkOT=-$\frac{3m}{4}$£¬
¿ÉµÃkOG=kOT£¬
¼´Ïß¶ÎPQµÄÖеãÔÚÖ±ÏßOTÉÏ£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÍÖÔ²·½³ÌµÄÇó½âÒÔ¼°Ö±ÏߺÍÍÖÔ²µÄλÖùØÏµÊÇÓ¦Óã¬ÀûÓÃÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢×ª»¯ÎªÒ»Ôª¶þ´Î·½³ÌÎÊÌâÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÔËËãÁ¿½Ï´ó£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èô¹ØÓÚa£¬bµÄ´úÊýʽf£¨a£¬b£©Âú×㣺
£¨1£©f£¨a£¬a£©=a£»
£¨2£©f£¨ka£¬kb£©=k•f£¨a£¬b£©£»
£¨3£©f£¨a1+a2£¬b1+b2£©=f£¨a1£¬b1£©+f£¨a2£¬b2£©£»
£¨4£©$f£¨a£¬b£©=f£¨b£¬\frac{a+b}{2}£©$£¬
Ôòf£¨1£¬0£©+f£¨2£¬0£©=0£»f£¨x£¬y£©=y£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª¡÷ABCµÄÁ½¸ö¶¥µãA£¬BµÄ×ø±ê·Ö±ðÊÇ£¨0£¬-$\sqrt{3}$£©£¬£¨0£¬$\sqrt{3}$£©£¬ÇÒAC£¬BCËùÔÚÖ±ÏßµÄбÂÊÖ®»ýµÈÓÚ$-\frac{3}{4}$£®
£¨1£©Çó¶¥µãCµÄ¹ì¼£MµÄ·½³Ì£»
£¨2£©µ±µãP£¨1£¬t£©ÎªÇúÏßMÉϵ㣬ÇÒµãPΪµÚÒ»ÏóÏ޵㣬¹ýµãP×÷Á½ÌõÖ±ÏßÓëÇúÏßM½»ÓÚE£¬FÁ½µã£¬Ö±ÏßPE£¬PFбÂÊ»¥ÎªÏà·´Êý£¬ÔòÖ±ÏßEFбÂÊÊÇ·ñΪ¶¨Öµ£¬ÈôÊÇ£¬Çó³ö¶¨Öµ£¬Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¹ýµãP£¨2£¬3£©ÓëÒÑÖªÖ±Ïßx-y-7=0´¹Ö±µÄÖ±Ïß·½³ÌÊÇ£¨¡¡¡¡£©
A£®x-y-5=0B£®x+y-5=0C£®x-y+5=0D£®x+y+5=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª³ÉµÈ±ÈÊýÁеÄÈý¸öÊýµÄ³Ë»ýΪ64£¬ÇÒÕâÈý¸öÊý·Ö±ð¼õÈ¥1¡¢2¡¢5ºóÓֳɵȲîÊýÁУ¬ÇóÕâÈý¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÒ»´Î¹ºÎï³é½±»î¶¯ÖУ¬¼ÙÉèijl0ÕŽ±È¯ÖÐÓÐÒ»µÈ½±È¯1ÕÅ£¬¿É»ñµÃ¼ÛÖµ100ÔªµÄ½±Æ·£¬ÓжþµÈ½±È¯3ÕÅ£¬Ã¿ÕſɻñµÃ¼ÛÖµ50ÔªµÄ½±Æ·£¬ÆäÓà6ÕÅûÓн±£¬Ä³¹Ë¿Í´Ó´Ël0ÕŽ±È¯ÖÐÈγé2ÕÅ£¬Çó
£¨I£©¸Ã¹Ë¿ÍÖн±µÄ¸ÅÂÊ£»
£¨¢ò£©¸Ã¹Ë¿Í»ñµÃ½±Æ·×ܼÛÖµXµÄ¸ÅÂÊ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®É躯Êýf£¨x£©=2|x+a|-|x+b|£¬
£¨¢ñ£©µ±a=0£¬b=-$\frac{1}{2}$ʱ£¬Çóʹf£¨x£©¡Ý$\sqrt{2}$µÄxȡֵ·¶Î§£»
£¨¢ò£©Èôf£¨x£©¡Ý$\frac{1}{16}$ºã³ÉÁ¢£¬Çóa-bµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Éèa=${£¨\frac{1}{2}£©^{\frac{1}{2}}}$£¬b=log20142015£¬c=log42£¬Ôò£¨¡¡¡¡£©
A£®a£¾b£¾cB£®b£¾c£¾aC£®b£¾a£¾cD£®a£¾c£¾b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÏÂÁÐÃüÌâÖÐ
¢Ù¸´Êýa+biÓëc+diÏàµÈµÄ³äÒªÌõ¼þÊÇa=cÇÒb=d
¢ÚÈκθ´Êý¶¼²»ÄܱȽϴóС
¢ÛÈô$\overrightarrow{{z}_{1}}$=$\overrightarrow{{z}_{2}}$£¬Ôò|$\overrightarrow{{z}_{1}}$|=|$\overrightarrow{{z}_{2}}$|
¢ÜÈô|$\overrightarrow{{z}_{1}}$|=|$\overrightarrow{{z}_{2}}$|£¬Ôò$\overrightarrow{{z}_{1}}$=$\overrightarrow{{z}_{2}}$»ò$\overrightarrow{{z}_{1}}$=-$\overrightarrow{{z}_{2}}$£®
ÕýÈ·µÄÑ¡ÏîÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÛB£®¢Ù¢ÚC£®¢Ù¢Û¢ÜD£®¢Ú¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸