精英家教网 > 高中数学 > 题目详情
7.设a=${(\frac{1}{2})^{\frac{1}{2}}}$,b=log20142015,c=log42,则(  )
A.a>b>cB.b>c>aC.b>a>cD.a>c>b

分析 利用指数函数与对数函数的性质分别比较三个数与$\frac{1}{2}$和1的大小得答案.

解答 解:∵a=${(\frac{1}{2})^{\frac{1}{2}}}$=$\sqrt{\frac{1}{2}}$=$\frac{\sqrt{2}}{2}∈$($\frac{1}{2}$,1),
b=log20142015>log20142014=1,
c=log42=$\frac{lg2}{lg4}=\frac{1}{2}$,
∴b>a>c.
故选:C.

点评 本题考查对数值的大小比较,考查指数函数与对数函数的运算性质,是基础题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,不经过原点O的直线l:y=kx+m(k>0)与椭圆E相交于不同的两点A、B,直线OA,AB,OB的斜率依次构成等比数列.
(Ⅰ)求a,b,k的关系式;
(Ⅱ)若离心率$e=\frac{1}{2}$且$|{AB}|=\sqrt{7}|{m+\frac{1}{m}}|$,当m为何值时,椭圆的焦距取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,点A,B分别为椭圆的右顶点和上顶点,且|AB|=$\sqrt{7}$.
(1)求椭圆C的标准方程;
(2)椭圆C的右焦点为F,过F点的两条互相垂直的直线l1、l2,直线l1与椭圆C交于P,Q两点,直线l2与直线x=4交于T点,求证:线段PQ的中点在直线OT上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱柱ABC-A1B1C1中,G为ABC的重心,延长线段AG交BC于F,B1F交BC1于E.
(1)求证:GE∥平面AA1B1B;
(2)平面AFB1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱柱ABCD-A1B1C1D1中,AB∥CD,AB⊥AD,AB=4,AD=2$\sqrt{2}$,CD=2,AA1=2,侧棱AA1⊥底面ABCD,E是A1D上一点,且A1E=2ED.
(1)求证:EO∥平面A1ABB1
(2)求直线A1B与平面A1ACC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,AB为圆O的直径,PA垂直圆O所在的平面,点C为圆O上的一点.
(1)求证:BC⊥平面PAC;
(2)若AB=2,BC=$\sqrt{3}$AC,PA=AB,点M为PC的中点,求三棱锥B-MOC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设区域Ω={(x,y)|0≤x≤1,0≤y≤1},区域A={(x,y)|y≤$\sqrt{x}$,(x,y)∈Ω},在区域Ω中随机取一个点,则该点在A中的概率$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(-2,-2),|$\overrightarrow{c}$|=2$\sqrt{2}$,$\overrightarrow{c}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=2,则$\overrightarrow{a}$和$\overrightarrow{c}$的夹角θ=120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.2016年高考报名体检中,某市共有40000名男生参加体检,体检其中一项为测量身高,统计调查数据显示所有男生的身高服从正态分布N(170,16).统计人员从市一中高三的参加体检的男生中随机抽取了50名进行身高测量,所得数据全部介于162cm和186cm之间,并将测量数据分成6组:第一组[162,166),第二组[166,170),…,第六组[182,186),然后按上述分组方式绘制得到如图所示的频率分布直方图.
(1)试评估市一中高三年级参加体检的男生在全市高三年级参加体验的男生中的平均身高状况(同一组中的数据用该区间的中间值作代表);
(2)在这50名参加体检的男生身高在178cm以上(含178cm)的人中任意抽取3人,将该3人中身高排名(从高到低)在全市参加体检的高三男生身高前52名的人数记为X,求X的数学期望.
若X-N(μ,δ2),则P(μ-δ<X≤μ+δ)=0.6826,P(μ-2δ<X≤μ+2δ))=0.9544,P(μ-3δ<X≤μ+3δ)=0.9974.

查看答案和解析>>

同步练习册答案