精英家教网 > 高中数学 > 题目详情
6.过点P(2,3)与已知直线x-y-7=0垂直的直线方程是(  )
A.x-y-5=0B.x+y-5=0C.x-y+5=0D.x+y+5=0

分析 根据与已知直线垂直的直线系方程可设与直线x-y-7=0垂直的直线方程为x+y+c=0,再把点(2,3)代入,即可求出c值,得到所求方程.

解答 解:∵所求直线方程与直线x-y-7=0垂直,
∴设所求直线为:x+y+c=0,
∵直线过点(2,3),
∴2+3+c=0,解得:c=-5,
∴所求直线方程为x+y-5=0.
故选:B.

点评 本题主要考查了互相垂直的两直线方程之间的关系,以及待定系数法求直线方程,属于常规题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.画区域:
(1)y>|x|+1;
(2)|x|>|y|;
(3)x>|y|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,不经过原点O的直线l:y=kx+m(k>0)与椭圆E相交于不同的两点A、B,直线OA,AB,OB的斜率依次构成等比数列.
(Ⅰ)求a,b,k的关系式;
(Ⅱ)若离心率$e=\frac{1}{2}$且$|{AB}|=\sqrt{7}|{m+\frac{1}{m}}|$,当m为何值时,椭圆的焦距取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在(0,+∞)上函数f(x)满足对任意x,y∈(0,+∞),都有xyf(xy)=xf(x)+yf(y),记数列an=f(2n),有以下命题:
①f(1)=0;
②a1=a2
③令函数g(x)=xf(x),则$g(x)+g(\frac{1}{x})=0$;
④令数列bn=2n•an,则数列{bn}为等比数列.
其中真命题的序号为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.袋中装有5只大小相同的球,编号分别为1,2,3,4,5,现从该袋中随机地取出3只,被取出的球
中最大的号码为ξ,则Eξ=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在等比数列{an}中,若a1,a2,…,a8都是正数,且公比q≠1,则(  )
A.a1+a8>a4+a5B.a1+a8<a4+a5
C.a1+a8=a4+a5D.a1+a8与a4+a5的大小关系不定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,点A,B分别为椭圆的右顶点和上顶点,且|AB|=$\sqrt{7}$.
(1)求椭圆C的标准方程;
(2)椭圆C的右焦点为F,过F点的两条互相垂直的直线l1、l2,直线l1与椭圆C交于P,Q两点,直线l2与直线x=4交于T点,求证:线段PQ的中点在直线OT上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱柱ABC-A1B1C1中,G为ABC的重心,延长线段AG交BC于F,B1F交BC1于E.
(1)求证:GE∥平面AA1B1B;
(2)平面AFB1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(-2,-2),|$\overrightarrow{c}$|=2$\sqrt{2}$,$\overrightarrow{c}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=2,则$\overrightarrow{a}$和$\overrightarrow{c}$的夹角θ=120°.

查看答案和解析>>

同步练习册答案