精英家教网 > 高中数学 > 题目详情
14.设x,y满足约束条件$\left\{\begin{array}{l}{x-2y≥-2}\\{3x-2y≤3}\\{x+y≥1}\end{array}\right.$,若x+2y≥a恒成立,则实数a的最大值为1.

分析 令z=2y+x,作平面区域,从而可得到z=2y+x的最小值为1,从而求得.

解答 解:令z=2y+x,
作平面区域如下,

结合图象可知,A(1,0);
且z=2y+x在A(1,0)处有最小值1,
故a≤1,
即实数a的最大值为1,
故答案为:1.

点评 本题考查了线性规划的应用及数形结合的思想方法应用,同时考查了转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.命题p:“|a|+|b|≤1”;命题q:“对任意的x∈R,不等式asinx+bcosx≤1恒成立”,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知:f(x)=cos2x+$\sqrt{3}$sinxcosx.
(1)若x∈R,求满足f(x)=0的x的值;
(2)若x∈R,求f(x)的最大值和最小值,并写出取最值时相应的x的值;
(3)若x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,在底面是菱形的直四棱柱ABCD-A1B1C1D1中,底面的边长为a,且有一个角为120°,侧棱长为2a,在空间直角坐标系中确定点A1,D,C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知i为虚数单位,若z(3+4i)=$\frac{5+12i}{i}$,则|z|=(  )
A.$\frac{12}{5}$B.$\frac{13}{5}$C.$\frac{5}{12}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等比数列{an},满足a1=1,a2016=2,函数y=f(x)的导函数为y=f′(x),且f(x)=x(x-a1)(x-a2)…(x-a2016),那么f′(0)=21008

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.画区域:
(1)y>|x|+1;
(2)|x|>|y|;
(3)x>|y|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知定义在R上的函数f(x)=$\frac{x+a}{{{x^2}+1}}$(a∈R)是奇函数,函数g(x)=$\frac{mx}{1+x}$的定义域为(-1,+∞).
(1)求a的值;
(2)若g(x)=$\frac{mx}{1+x}$在(-1,+∞)上递减,根据单调性的定义求实数m的取值范围;
(3)在(2)的条件下,若函数h(x)=f(x)+g(x)在区间(-1,1)上有且仅有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义在(0,+∞)上函数f(x)满足对任意x,y∈(0,+∞),都有xyf(xy)=xf(x)+yf(y),记数列an=f(2n),有以下命题:
①f(1)=0;
②a1=a2
③令函数g(x)=xf(x),则$g(x)+g(\frac{1}{x})=0$;
④令数列bn=2n•an,则数列{bn}为等比数列.
其中真命题的序号为①②③.

查看答案和解析>>

同步练习册答案