精英家教网 > 高中数学 > 题目详情
2.如图所示,在底面是菱形的直四棱柱ABCD-A1B1C1D1中,底面的边长为a,且有一个角为120°,侧棱长为2a,在空间直角坐标系中确定点A1,D,C的坐标.

分析 利用几何体与空间直角坐标系,求解所求点的坐标即可.

解答 解:底面是菱形的直四棱柱ABCD-A1B1C1D1中,底面的边长为a,且有一个角为120°,侧棱长为2a,
在空间直角坐标系中点A1($\frac{\sqrt{3}}{2}a$,-$\frac{1}{2}a$,0)
D($\frac{\sqrt{3}}{2}a$,$\frac{1}{2}a$,2a),
C(0,a,2a).

点评 本题考查空间点的坐标的求法,注意几何体的形状,底面的特征是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知f(x)是R奇函数,对x∈R都有f(x+4)=f(x)+f(2)成立,若f(1)=2,则f(2015)等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{x+a}{{x}^{2}+2x+2}$.
(I)证明:对任意实数a,存在(α,β),α<β,使得函数f(x)在(α,β)上是增函数;
(Ⅱ)若方程f(x)=x-1有三个不同实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若f(x)=3x3+2x2+x+4,则f(9)=2362.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知△ABC中,M为线段BC上一点,AM=BM,$\overrightarrow{AM}$•$\overrightarrow{AB}$=2,AC2+3BC2=4,则△ABC的面积最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在等比数列{an}中,已知a1=5,a9•a10=100,求a18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设x,y满足约束条件$\left\{\begin{array}{l}{x-2y≥-2}\\{3x-2y≤3}\\{x+y≥1}\end{array}\right.$,若x+2y≥a恒成立,则实数a的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知四边形ABEF为矩形,四边形ABCD为直角梯形,平面ABEF⊥平面ABCD,∠BAD=90°,AB∥CD,AF=BC=2,CD=3,AB=4.
(1)求证:AC⊥平面BCE;
(2)求三棱锥E-BCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为降低雾霾等恶劣气候对居民的影响,某公司研发了一种新型防雾霾产品.每一台新产品在进入市场前都必须进行两种不同的检测,只有两种检测都合格才能进行销售,否则不能销售.已知该新型防雾霾产品第一种检测不合格的概率为$\frac{1}{6}$,第二种检测不合格的概率为$\frac{1}{10}$,两种检测是否合格相互独立.
(Ⅰ)求每台新型防雾霾产品不能销售的概率;
(Ⅱ)如果产品可以销售,则每台产品可获利40元;如果产品不能销售,则每台产品亏损80元(即获利-80元).现有该新型防雾霾产品3台,随机变量X表示这3台产品的获利,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案