| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
分析 a=b=0时,不等式asinx+bcosx≤1恒成立.a与b不全为0时,不等式asinx+bcosx≤1化为:sin(x+θ)≤$\frac{1}{\sqrt{{a}^{2}+{b}^{2}}}$,由于对任意的x∈R,不等式asinx+bcosx≤1恒成立”,可得$\frac{1}{\sqrt{{a}^{2}+{b}^{2}}}$≥1,化简即可判断出结论.
解答 解:a=b=0时,不等式asinx+bcosx≤1恒成立.![]()
a与b不全为0时,不等式asinx+bcosx≤1化为:sin(x+θ)≤$\frac{1}{\sqrt{{a}^{2}+{b}^{2}}}$,
∵对任意的x∈R,不等式asinx+bcosx≤1恒成立”,
∴$\frac{1}{\sqrt{{a}^{2}+{b}^{2}}}$≥1,
∴a2+b2≤1,画出图象:可知:(a,b)表示的是以原点为圆心,1为半径的圆及其内部.
而|a|+|b|≤1可知:(a,b)表示的是正方形ABCD及其内部.
∴p是q的充分不必要条件.
故选:A.
点评 本题考查了三角函数求值、不等式的性质、简易逻辑的判定方法,考查了数形结合方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1” | |
| B. | “x=-1”是“x2-5x-6=0”的必要不充分条件 | |
| C. | 命题“?x∈R使得x2+x+1<0”的否定是:“?x∈R均有x2+x+1<0” | |
| D. | 已知命题p:?x∈[0,1],a≥ex,命题q:?x∈R,使得x2+4x+a≤0.若命题“p∧q”是假命题,则实数a的取值范围是(-∞,e)∪(4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com