精英家教网 > 高中数学 > 题目详情
7.已知数列{an}中a1,a2的分别是直线2x+y-2=0的横、纵截距,且$\frac{{{a_{n+1}}-{a_{n-1}}}}{{{a_n}+{a_{n+1}}}}$=2(n≥2,n∈N*),则数列{an}的通项公式为an=(3n-4)(-1)n

分析 数列{an}中a1,a2的分别是直线2x+y-2=0的横、纵截距,可得a1=1,a2=2.$\frac{{{a_{n+1}}-{a_{n-1}}}}{{{a_n}+{a_{n+1}}}}$=2(n≥2,n∈N*),化为:an+1+an=-(an+an-1),利用等比数列的通项公式可得:an+1+an=3×(-1)n-1.变形为:$\frac{{a}_{n+1}}{(-1)^{n+1}}$-$\frac{{a}_{n}}{(-1)^{n}}$=3,再利用等差数列的通项公式即可得出.

解答 解:数列{an}中a1,a2的分别是直线2x+y-2=0的横、纵截距,∴a1=1,a2=2.
∵$\frac{{{a_{n+1}}-{a_{n-1}}}}{{{a_n}+{a_{n+1}}}}$=2(n≥2,n∈N*),化为:an+1+an=-(an+an-1),
∴数列{an+1+an}是等比数列,首项为3,公比为-1.
∴an+1+an=3×(-1)n-1
变形为:$\frac{{a}_{n+1}}{(-1)^{n+1}}$-$\frac{{a}_{n}}{(-1)^{n}}$=3,
∴数列$\{\frac{{a}_{n}}{(-1)^{n}}\}$是等差数列,公差为3,首项为-1.
∴$\frac{{a}_{n}}{(-1)^{n}}$=-1+3(n-1)=3n-4.
∴an=(3n-4)(-1)n
故答案为:an=(3n-4)(-1)n

点评 本题考查了递推关系、等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在等比数列{an}中,已知a1=5,a9•a10=100,求a18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某地区某商品的零售价格每周不断发生变化,但呈现如下规律:本周价格a元时,下周价格以概率p升1元或以概率1-p降1元,若第一周的价格为20元.
(I)若p=$\frac{1}{2}$,求第五周价格仍为20元的概率;
(Ⅱ)若p=$\frac{2}{3}$,第五周的价格为X元,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a>b>0,试指出$\frac{a+b}{2}$-$\sqrt{ab}$,$\frac{(a-b)^{2}}{8a}$,$\frac{(a-b)^{2}}{8b}$的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为降低雾霾等恶劣气候对居民的影响,某公司研发了一种新型防雾霾产品.每一台新产品在进入市场前都必须进行两种不同的检测,只有两种检测都合格才能进行销售,否则不能销售.已知该新型防雾霾产品第一种检测不合格的概率为$\frac{1}{6}$,第二种检测不合格的概率为$\frac{1}{10}$,两种检测是否合格相互独立.
(Ⅰ)求每台新型防雾霾产品不能销售的概率;
(Ⅱ)如果产品可以销售,则每台产品可获利40元;如果产品不能销售,则每台产品亏损80元(即获利-80元).现有该新型防雾霾产品3台,随机变量X表示这3台产品的获利,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F与抛物线y2=4x的焦点重合,且椭圆的离心率为$\frac{\sqrt{3}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C上是否存在关于直线l:x+y=$\frac{1}{5}$对称的两点A、B,若存在,求出直线AB的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.体育课上,李老师对初三(1)班50名学生进行跳绳测试.现测得他们的成绩(单位:个)全部介于20到70之间,将这些成绩数据进行分组(第一组:(20,30],第二组:(30,40],…,第五组:(60,70]),并绘制成如图所示的频率分布直方图.
(Ⅰ)求成绩在第四组的人数和这50名同学跳绳成绩的中位数;
(Ⅱ)从成绩在第一组和第五组的同学中随机抽出3名同学进行搭档训练,设取自第一组的人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某种填数字彩票,购票者花2元买一张小卡片,在卡片上填10以内(0,1,2,…,9)的三个数字(允许重复).如果依次填写的三个数字与开奖的三个有序的数字分别对应相等,得奖金1000元.只要有一个数字不符(大小或次序),无奖金.则购买一张彩票的期望收益是-1元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知A(2,1),O(0,0),点M(x,y)满足$\left\{\begin{array}{l}{1≤x≤2}\\{y≤2}\\{2x-y≤2}\end{array}\right.$,则Z=$\overrightarrow{OA}$•$\overrightarrow{AM}$的最大值为1.

查看答案和解析>>

同步练习册答案