精英家教网 > 高中数学 > 题目详情

【题目】某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在层班级,生物在层班级.该校周一上午选科走班的课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有(

第一节

第二节

第三节

第四节

地理2

化学3

地理1

化学4

生物1

化学2

生物2

历史1

物理1

生物3

物理2

生物4

物理2

生物3

物理1

物理4

政治1

物理3

政治2

政治3

A.8B.10C.12D.14

【答案】B

【解析】

根据表格,利用分类讨论思想进行逻辑推理一一列举即可.

张毅同学不同的选课方法如下:

物理A层1班,生物B层3班,政治3班;

物理A层1班,生物B层3班,政治2班;

物理A层1班,生物B层2班,政治3班;

物理A层3班,生物B层2班,政治3班;

物理A层3班,生物B层2班,政治1班;

物理A层2班,生物B层3班,政治1班;

物理A层2班,生物B层3班,政治3班;

物理A层4班,生物B层3班,政治2班;

物理A层4班,生物B层3班,政治1班;

物理A层4班,生物B层2班,政治1班;

共10种.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,若点A为函数上的任意一点,点B为函数上的任意一点.

(1)求AB两点之间距离的最小值;

(2)若AB为函数与函数公切线的两个切点,求证:这样的点B有且仅有两个,且满足条件的两个点B的横坐标互为倒数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)证明:对任意的,存在唯一的,使

3)设(2)中所确定的关于的函数为,证明:当时,有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数是偶函数,求实数的值;

2)若函数,关于的方程有且只有一个实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

1)当时,判断函数在定义域上的单调性;

2)求函数的极值点;

3)当时,试证明对任意的正整数,不等式都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求的普通方程和的直角坐标方程;

(Ⅱ)若交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面为直角梯形是以为底边的等腰直角三角形.

(1)求证:

(2)若的垂心,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,曲线.

(1)求的普通方程和的直角坐标方程;

(2)若曲线交于两点,的中点为,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某地有三家工厂,分别位于矩形ABCD的顶点AB以及CD的中点P处,已知AB=20kmCB=10km,为了处理三家工厂的污水,现要在矩形ABCD(含边界),且与AB等距离的一点O处建造一个污水处理厂,并铺设排污管道AOBOOP,设排污管道的总长为km

(I),将表示成的函数关系式;

(II)确定污水处理厂的位置,使三条排污管道的总长度最短,并求出最短值.

查看答案和解析>>

同步练习册答案