精英家教网 > 高中数学 > 题目详情
9.已知平面向量$\overrightarrow{i}$,$\overrightarrow{j}$是单位向量,且$\overrightarrow{i}$•$\overrightarrow{j}$=$\frac{1}{2}$,若平面向量$\overrightarrow{a}$满足:$\overrightarrow{a}$•$\overrightarrow{i}$=$\overrightarrow{a}$•$\overrightarrow{j}$=$\sqrt{3}$,则|$\overrightarrow{a}$|=2.

分析 求出$\overrightarrow{i},\overrightarrow{j}$的夹角,由$\overrightarrow{a}$•$\overrightarrow{i}$=$\overrightarrow{a}$•$\overrightarrow{j}$=$\sqrt{3}$可知$\overrightarrow{a}$平分$\overrightarrow{i},\overrightarrow{j}$的夹角,根据数量积的定义列方程解出|$\overrightarrow{a}$|.

解答 解:∵$\overrightarrow{i}$,$\overrightarrow{j}$是单位向量,$\overrightarrow{i}•\overrightarrow{j}=\frac{1}{2}$,∴平面向量$\overrightarrow{i},\overrightarrow{j}$的夹角为60°,
∵$\overrightarrow{a}$•$\overrightarrow{i}$=$\overrightarrow{a}$•$\overrightarrow{j}$=$\sqrt{3}$,∴$\overrightarrow{a}$为<$\overrightarrow{i},\overrightarrow{j}$>的角平分线,
∴$\overrightarrow{a}•\overrightarrow{i}=|\overrightarrow{a}|$cos30°=$\sqrt{3}$,
∴|$\overrightarrow{a}$|=2.
故答案为:2.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列函数中与f(x)=2x+2-x具有相同的奇偶性的是(  )
A.y=sinxB.y=x2+x+1C.y=|x|D.y=|lgx|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(理)某学习小组共12人,其中有五名是“三好学生”,现从该小组中任选5人参加竞赛,用ξ表示这5人中“三好学生”的人数,则下列概率中等于$\frac{C_7^5+C_5^1C_7^4}{{C_{12}^5}}$的是(  )
A.P(ξ=1)B.P(ξ≤1)C.P(ξ≥1)D.P(ξ≤2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆Γ:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的中心为O,一个方向向量为$\overrightarrow{d}$=(1,k)的直线l与Γ只有一个公共点M.
(1)若k=1且点M在第二象限,求点M的坐标;
(2)若经过O的直线l1与l垂直,求证:点M到直线l1的距离d≤$\sqrt{5}$-2;
(3)若点N、P在椭圆上,记直线ON的斜率为k1,且$\overrightarrow{d}$为直线OP的一个法向量,且$\frac{{k}_{1}}{k}$=$\frac{4}{5}$,求|ON|2+|OP|2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,点D在BC边所在直线上,若$\overrightarrow{CD}$=4$\overrightarrow{BD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,则2m+n的值等于(  )
A.$\frac{4}{3}$B.3C.$\frac{8}{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{33}}{7}$,且(4,0)在椭圆C上,圆M:x2+y2=r2与直线l:y=8x的一个交点的横坐标为1.
(1)求椭圆C的方程与圆M的方程;
(2)已知A(m,n)为圆M上的任意一点,过点A作椭圆C的两条切线l1,l2.试探究直线l1,l2的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在等比数列{an}中,若a4,a8是方程3x2-11x+9=0的两根,则a6的值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a>0,b>0,若a+b=1,则$\frac{1}{2a+1}+\frac{4}{2b+1}$的最小值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正三棱柱ABC-A1B1C1的所有顶点都在半径为1的球面上,当正三棱锥的体积最大时,该正三棱锥的高为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案