精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=(k+)lnx+,k∈[4,+∞),曲线y=f(x)上总存在两点M(x1,y1),N(x2,y2),使曲线y=f(x)在M,N两点处的切线互相平行,则x1+x2的取值范围为

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

【答案】B

【解析】

利用过M、N点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x1+x2

的取值范围.

由题得f′(x)=﹣1=﹣=﹣,(x0,k0)

由题意,可得f′(x1)=f′(x2)(x1,x20,且x1x2),

﹣1=﹣1,

化简得4(x1+x2)=(k+)x1x2

x1x2

4(x1+x2(k+

x1+x2k[4,+∞)恒成立,

g(k)=k+

g′(k)=1﹣=0k[4,+∞)恒成立,

g(k)g(4)=5,

x1+x2

x1+x2的取值范围为(+∞).

故答案为:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国在北宋1084年第一次印刷出版了《算经十书》,即贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》、《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》和《四元玉鉴》.这些书中涉及的很多方面都达到古代数学的高峰,其中一些算法如开立方和开四次方也是当时世界数学的高峰.某图书馆中正好有这十本书现在小明同学从这十本书中任借两本阅读,那么他取到的书的书名中有字的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为.

(1)求函数的解析式,并证明:.

(2)已知,且函数与函数的图象交于两点,且线段的中点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t(单位:分钟)满足:4≤t≤15N,平均每趟地铁的载客人数p(t)(单位:人)与发车时间间隔t近似地满足下列函数关系:,其中.

(1)若平均每趟地铁的载客人数不超过1500人,试求发车时间间隔t的值.

(2)若平均每趟地铁每分钟的净收益为(单位:元),问当发车时间间隔t为多少时,平均每趟地铁每分钟的净收益最大?井求出最大净收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)求的解析式及单调区间;

(2)若对任意的恒成立,证明.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形,平面平面,三角形为等边三角形,

(Ⅰ)求证:平面平面

(Ⅱ)若平面

①求异面直线所成角的余弦值;

②求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某游乐园的一个摩天轮半径为10米,轮子的底部在地面上2米处,如果此摩天轮每20分钟转一圈,当摩天轮上某人经过处时开始计时(按逆时针方向转),(其中平行于地面).

1)求开始转动5分钟时此人相对于地面的高度.

2)开始转动分钟时,摩天轮上此人经过点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在ABC中,DE分别为ABAC的中点,ODE的中点,AB=AC=2BC=4.将ADE沿DE折起到A1DE的位置,使得平面A1DE平面BCED,如下图.

(Ⅰ)求证:A1OBD

(Ⅱ)求直线A1C和平面A1BD所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中,角所对的边分别是,且.

1)求角

2所在平面内一点,且满足,求的最小值,并求取得最小值时的面积.

查看答案和解析>>

同步练习册答案